
Research Internship
April 23, 2007 – September 14, 2007

Zürich, Switzerland

Large scale Singular Value Decomposition

and applications in Machine Learning

Latent Semantic Analysis – Collaborative Filtering

Aurélien Boffy

Engineer student

Supervisors: Gökhan Bakır – Olivier Bousquet

École Normale Supérieure de Cachan Google Switzerland GmbH
61 avenue du Président Wilson Freigutstrasse 12

94235 Cachan cedex 8002 Zurich
France Switzerland

+33 1 47 40 20 00 +41 44 668 1800

Confidentiality

A significant part of the work I did at Google involves confidential informa-
tion that cannot be included in such a report. Thus, this document does
not contain all the work I did during this internship. I am not allowed to
describe the context of the internship and the concrete applications of my
work (an important part of the code is already used in production). This
report only contains public methods, algorithms and applications.

Contents

Introduction 5

Host company 6
Google . 6
Zürich office . 6
Work environment . 6

I Large scale Singular Value Decomposition 8

1 What is SVD? 9
1.1 Definition . 9
1.2 Properties . 10

1.2.1 Truncated SVD . 10
1.2.2 Relation to Eigenvalue Decomposition 10

1.3 Characteristics of our problem 11
1.3.1 Large matrix . 11
1.3.2 Sparse matrix . 11
1.3.3 Partial SVD . 12
1.3.4 Parallel implementation 12

2 Methods to compute SVD 13
2.1 LAPACK (full dense SVD) 13

2.1.1 QR decomposition . 13
2.1.2 Bidiagonalization . 14
2.1.3 Analysis . 15

2.2 Power Method . 17
2.2.1 Standard Power Method 17
2.2.2 Adaptation to our problem 18
2.2.3 Analysis . 19

2.3 Generalized Hebbian Algorithm 21
2.3.1 Oja Model . 21
2.3.2 Stanger Model . 22
2.3.3 Analysis . 23

CONTENTS 3

2.4 Sampling methods . 23
2.4.1 Overall view . 24
2.4.2 Results . 24

2.5 Lanczos algorithm . 25
2.5.1 Overview . 25
2.5.2 Parallel computation 26
2.5.3 Experimental results 26

II Applications 28

3 Latent Semantic Analysis 29
3.1 Motivation . 29
3.2 Principle . 30
3.3 Usage of the SVD for Latent Semantic Analysis 30

3.3.1 Vector Space Model 30
3.3.2 Interpretation of the SVD model 31
3.3.3 Interests of this low-rank approximation 32
3.3.4 Visualization purpose 33

3.4 Preprocessing of the document-term matrix 34
3.4.1 Tf-idf scheme . 34
3.4.2 Other normalization methods 35

3.5 Relatedness measure . 35
3.5.1 Comparing two terms or two documents 35
3.5.2 Comparing a term and a document 36
3.5.3 Considering new queries 36
3.5.4 Other similarity measures 37

3.6 Evaluation – Word List Expander 38
3.6.1 Precision-Recall trade-off 38
3.6.2 Experimental results 39

4 Collaborative Filtering 42
4.1 Presentation . 42

4.1.1 The Netflix database 42
4.1.2 Common approaches 43

4.2 Missing values . 44
4.2.1 Shifted columns . 45
4.2.2 Gradient descent . 45

4.3 Other approaches . 50
4.3.1 Using a movie relatedness matrix 50
4.3.2 Taking user profiles into account 51

Conclusion 53

List of Figures

2.1 Computational time of the Lapack method to compute the
SVD for a Latent Semantic Analysis application. 15

2.2 Lapack method running time is O
(
min(mn2,m2n)

)
. 16

2.3 The power method is much faster than Lapack, because we do
not need to compute the full SVD. 20

2.4 Computational time of the Lanczos algorithm on a single ma-
chine. 27

3.1 Projection of a corpus of 10, 000 labelled documents on the
resulting 5-dimensional LSA-space. 33

3.2 Typical trade-off between precision and recall. 39
3.3 Quality of the generated list with respect to the number of di-

mensions of the concept-space and to the relatedness measure. 40

4.1 The estimated ratings are clipped to the range 1-5. 51
4.2 Functions used to take user rating profiles into account during

the learning stage. 52

Introduction

Singular Value Decomposition (SVD) based algorithms are for example used
to recognize data in noisy environments or to reduce data storage require-
ments. They are used in many different areas, especially in Image Pro-
cessing and in Machine Learning. In particular, Google could use SVD in
different applications of data modeling/mining, like Latent Semantic Analy-
sis (LSA), Recommender Systems, or other information retrieval algorithms.
Unfortunately, SVD algorithms typically have cubic complexity. As Google
is usually working on very large corpora of text documents (of the order of
billions) where each document is represented as a very large feature vector,
performing SVD is a challenge. The initial goal of this internship was to
come up with a method to perform SVD for very large matrices using the
massively parallel Google infrastructure.

During the first part of the internship, I did some literature review and
tried different algorithms to compute SVD, focusing on the LSA application.
Once we had a satisfying method, the next phase was to implement a word
list generator (whose goal is to generate automatically a list of words that
are related to some input seed words), based on the results of the LSA
procedure. This tool is particularly useful for the people that were working in
my team. This stage consisted in many experiments and tuning to maximize
the quality of the generated list.

Then, we tried to apply our SVD algorithm to another important appli-
cation, which is Collaborative Filtering. This problem has different proper-
ties that make our original approach not very efficient. We tried to alleviate
these difficulties by using new techniques.

Please note that this report is of course mainly focused on the mathe-
matical and algorithmic aspects of my work. It also describes the different
applications and the experimental results. However, even if this represents
an important part of my work, I should mention that this internship has also
been a great opportunity for me to improve my programming skills. Soft-
ware development is of course crucial for me because I’m planning to carry
on working in the industry (I got an offer for a full-time position at Google).
Software architecture, design patterns, or unit testing, are very important
for an engineer and I think this internship was really a good complement to
the courses I have had so far.

Host company

Google

Google is an American company specializing in Internet search and online
advertising. It was founded in 1998 and has about 14, 000 employees. In
2006, its revenue was over 10.6 billion dollars.

67% of queries worldwide went through Google in April 2007. Google’s
main competitors are Yahoo and Microsoft. Although Internet search re-
mains its core business, Google has developed many other applications, rang-
ing from an email service (GMail), to an automated news aggregator (Google
News), via a web mapping application (Google Maps).

Google generates revenue mostly by delivering online advertising. Busi-
nesses use its AdWords program to promote their products and services with
targeted advertising, and third-party websites use the AdSense program to
deliver relevant advertisements.

Zürich office

Google is growing very rapidly. The company is hiring about 25 employees
every week and receives more than 1, 000 resumés a day. Google has many
offices all over the world. The first engineering center in Europe has been
opened in Zürich in 2004. More than 350 engineers are working in this office
on many different projects. I am not allowed to give any further details
about the projects that are currently being worked on in Zürich or about
the team I was working with.

Work environment

Google is known for its overall quality of life. Offices are offering a lot of
work facilities, ranging from the direct connectivity to the Google network to
the amazing video-conferencing coverage which allows Googlers from Zürich
to work easily with employees of Mountain View. The company just makes
sure that employees do not have to worry about any practical issues. Thus
many benefits are offered to employees, like the famous free gourmet food,

7

on-site massages, along with numerous social events that happen along the
year (i.e., ski trips, cinema nights...).

Furthermore, employees work in a very diverse and multi-cultural envi-
ronment. In the Google Zürich office, there are people from more than 35
countries.

From an engineering point of view, Google is also a great place to work.
First because all the people you work with are really smart and it’s a great
feeling because whatever question coming to your head, you can be sure
to get a good answer. For instance, the authors of Vim and GZip, Brim
Moolenaar and Jean-Loup Gailly, are working at Google Zürich. I was
supervised by very good people (Gökhan Bakır and Olivier Bousquet), and
several other well-known people were working in the same office as me,
like Thomas Hofmann. These engineers try to stay close to the academic
community. For instance, I was taking part to a Machine Learning Reading
Group every week, were people interested in Machine Learning simply met to
discuss about new papers that could be interesting for Google applications.
Technical talks on diverse topics (including non-technical or non-Google-
related lectures) are also held in a weekly basis.

Another advantage of working at Google for an engineer is the resources
that Google is offering, in terms of computational capacity. It becomes easy
to run job on parallel and to work on huge data.

In order to get consistent code, and to optimize the engineering work, all
the projects share the same codebase. Moreover, Google wrote or wrapped
tools to provide a simple and reliable development environment: build tools,
unit testing and performance frameworks, bug reporting, version control
systems...

Part I

Large scale Singular Value
Decomposition

Chapter 1

What is SVD?

1.1 Definition

Let’s start with the definition of the Singular Value Decomposition (SVD).
We will see some of its properties afterwards and explain why it is so pow-
erful.

Suppose X is an m× n matrix of real-valued data. The Singular Value
Decomposition of X consists of writing X as the product of 3 matrices:

X = UΣV T

where:

• Σ is a diagonal matrix whose diagonal entries are non-negative and
are called singular values. By convention, they are usually arranged
in descending order.

• U and V are matrices whose columns are orthonormal: the norm of
each is 1 and the inner product between 2 different columns is 0 (i.e.,
UT U = I and V T V = I). The columns of U and V are called the left
and right singular vectors, respectively, for the corresponding singular
values.

More schematically:

X U Σ V T

x1,1 . . . x1,n

...
. . .

...

xm,1 . . . xm,n

=

u1,1

...

um,1

. . .

u1,r

...

um,r

σ1 0
. . .

0 σr

[
v1,1 . . . v1,n

]
...[

vr,1 . . . vr,n

]

where r is the rank of X (r ≤ min(m,n)).

1.2 Properties 10

Note that an entry xi,j of the original matrix X can be computed with
this equation:

xi,j =
r∑

k=1

ui,k σk vk,j = ui,· Σvj,·T

where ui,· represents the ith row of the matrix U .

1.2 Properties

1.2.1 Truncated SVD

One of the main interests of the SVD is that it provides a simple method
to get an optimal approximation of X. When you want to approximate a
given matrix with a ”simpler” one, it is very common to use the rank as a
measure of ”complexity”. Thus, we aim at finding the matrix Xk whose rank
equals k < r, which is the best approximation of X for a certain measure.
The most common measure of discrepancy is the sum-squared error, or the
Frobenius distance (Frobenius norm of the difference) between X and Y :

||X − Y ||2F =
∑

i,j

(Xi,j − Yi,j)
2

When multiplying all three matrices U , Σ and V T together to reconstruct
the original matrix, the singular values act as weights of the singular vectors:

X =
r∑

t=1

σtu·,tv·,tT

The matrix is seen as a sum of r rank 1 matrices of decreasing importance. A
singular vector with a large corresponding singular value has a large impact
on the reconstruction, while small value indicates a singular vector with
almost no impact on the result. Thus small values and their vectors may be
discarded without affecting the result noticeably.

The truncated SVD consists of retaining only the largest k singular values
and the corresponding columns of U and V . The truncated matrices can be
multiplied together and it turns out that UkΣkV

T
k = Xk: it is the best rank-

k approximation (closest in the least square sense, i.e., for the Frobenius
norm) to the original matrix X:

UkΣkV
T
k = Xk = argmin

rank(Y)=k
||X − Y ||F

1.2.2 Relation to Eigenvalue Decomposition

We can notice that the SVD is closely related to the regular Eigenvalue
Decomposition of a square symmetric matrix Y in Y = WDW T where W

1.3 Characteristics of our problem 11

is orthogonal and D is diagonal. As a matter of facts, U is the matrix of
the eigenvectors of XXT and V is the matrix of the eigenvectors of XT X,
Σ2 being in both cases the matrix of eigenvalues:

XXT = UΣ2UT XT X = V Σ2V T

1.3 Characteristics of our problem

The Singular Value Decomposition has many applications. We will consider
some of them later in this report. Nevertheless, the different applications
that were of interest for my supervisors at Google have some properties in
common that I had to keep in mind during the beginning of the internship,
particularly for the literature review.

1.3.1 Large matrix

One of the main constraints for this work was the size of the data. This
is very common at Google since they are dealing with a huge amount of
information. To have a first idea of this issue, let’s simply address the
case of a document-term matrix , because I was working with such matrices
during a long part of my internship. These matrices are very common in
natural language processing to represent documents as mathematical objects
(matrices). Each row of such a matrix simply represents a document, while
each column represents a word. If a given term appears in a document, the
corresponding entry is non-zero1, and the entry is zero otherwise.

As Google is dealing with the entire Web, the number of documents is
of the order of billions. The number of terms that appears on Internet is
also huge, mostly because of typographic mistakes and proper names. We
will see later that it is often useful to get rid of infrequent terms and we can
finally approximate the number of columns to one million.

To summarize, we can consider that we have to handle matrices that
have of the order of a billion rows and a million columns.

1.3.2 Sparse matrix

Although matrices we have to deal with are very big, they are also par-
ticularly sparse. For instance for the document-term matrix2, we can con-
sider that a document contains on average 200 different terms. Thus, only
200/106 = 0.02% of the entries are non-zeros.

This characteristic is of course very important in regards to the methods
used to perform SVD. Handling such matrices is different from handling

1It may be 1 in case of a binary matrix, it may be the number of occurrences of the
term in the document, etc.

2It is roughly the same for the other matrices I had to deal with.

1.3 Characteristics of our problem 12

regular ones, since it is much more efficient to only store the non-zero entries.
It is crucial to think about algorithm design that allows this sparsity to be
preserved during execution. Otherwise, the space needed to store the data
could be multiplied by a factor of several thousands and the subsequent
computations would take much more time.

1.3.3 Partial SVD

The most important property of SVD used by the different applications is
related to the truncated SVD described in section 1.2.1 page 10. We usually
only need to compute the first k singular values and their corresponding
singular vectors. This is a property of the problem that we really need to
take into account because it reduces the amount of work quite significantly.
Indeed, for a typical 109× 106 matrix, performing the full SVD corresponds
to computing about 106 singular values and corresponding singular vectors,
while we usually only need to consider the first few hundreds.

1.3.4 Parallel implementation

Finally, as soon as we have some information about the problem and espe-
cially its size, we understand that we won’t be able to solve it on a single
machine, because of the required storage space and computational time. It
is good to have this in mind from the start, so that we can quickly discard
methods that are impossible to parallelize. Some computational tasks (like
matrix multiplications) are easy to parallelize, while others are not.

Chapter 2

Methods to compute SVD

During the first few weeks, I spent a significant part of my time reading
papers about SVD and the different ways that have been tried so far to
compute it quickly. I have implemented several methods, in order to have
more insights about the problems and to have some points of comparison.

We introduce some methods in the following sections, focusing on the
characteristics of our problem.

2.1 LAPACK (full dense SVD)

The most common method used to perform SVD is the one implemented in
LAPACK (Linear Algebra PACKage) and in most popular SVD algorithms.
For instance, the svd command of Matlab uses LAPACK routines.

The basis of these methods lies in the reduction of the original matrix
X to a bidiagonal form (i.e., a matrix where only the main diagonal and
first superdiagonal entries are non-zero) by using orthogonal transformations
called Householder reflections [11]. It is then easy to compute the SVD of
this bidiagonal matrix by using common methods for the computation of
eigenvalues of symmetric matrices.

2.1.1 QR decomposition

Householder reflections are usually used to calculate QR decomposition of
a matrix: A = QR where Q is an orthogonal matrix and R is an upper
triangular matrix.

A Householder reflection is an orthogonal matrix H used to zero selected
components of a vector. For an arbitrary vector, there is a Householder

2.1 LAPACK (full dense SVD) 14

reflection H so that

H

∗
∗
∗
∗
∗

=

∗
0
0
0
0

This can be used to gradually transform an m × n matrix to upper
triangular form. First we want to zero the first column (except the first
element):

H1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

=

∗ ∗ ∗ ∗
0 ⊗ ∗ ∗
0 ⊗ ∗ ∗
0 ⊗ ∗ ∗
0 ⊗ ∗ ∗

In the next step, we focus on the highlighted entries and determine a
Householder matrix Ĥ2 so that

Ĥ2

⊗
⊗
⊗
⊗

 =

⊗
0
0
0

If H2 = diag(I1, Ĥ2), then

H2H1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

=

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

We repeat this process until we get an upper triangular matrix. As each
Householder matrix is orthogonal, we have obtained a QR decomposition.

2.1.2 Bidiagonalization

The process is very similar to bidiagonalize the initial matrix. We use House-
holder transformations to alternatively zero parts of the columns and of the
rows of the matrix:

2.1 LAPACK (full dense SVD) 15

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−→

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

−→

∗ ∗ 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

−→

∗ ∗ 0 0
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

−→

∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

−→

∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 0 ∗
0 0 0 ∗

−→

∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

Note that it is not possible to diagonalize the matrix by using this
method. Once the first column has been zeroed (except the first element),
it is not possible to zero all the entries of the first row (except the first
element), because it would un-zero the first column.

Once the matrix has been bidiagonalized, the SVD of a bidiagonal matrix
can be computed very efficiently, as described by Dhillon and Parlett [8] for
example. This last stage is not critical from a computational complexity
perspective.

2.1.3 Analysis

This method (and other similar ones) is certainly the best one today to
compute the SVD of a given arbitrary matrix. I have tried it for a document-
term matrix (see section 1.3.1 page 11). Figure 2.1 shows the computational
time in seconds with respects to the number of documents and with respect
to the number of words (when a new document is added, it also adds new
terms in the index, so both graphs are correlated).

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

number of documents

co
m

pu
ta

tio
na

l t
im

e
(s

)

0 5000 10000 15000 20000 25000 30000 35000 40000
0

200

400

600

800

1000

1200

1400

number of words

co
m

pu
ta

tio
na

l t
im

e
(s

)

Figure 2.1: Computational time of the Lapack method to compute the SVD
for a Latent Semantic Analysis application.

2.1 LAPACK (full dense SVD) 16

Actually, it can be shown (see [11]) that the computational complexity of
the bidiagonalization step that we have seen before is O

(
min(mn2,m2n)

)
,

where m × n is the size of the matrix. This is also the complexity of the
complete SVD because subsequent steps have a lower cost. This is validated
by Figure 2.2.

0e+00 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10
0

200

400

600

800

1000

1200

1400

num_docs^2 * num_words

co
m

pu
ta

tio
na

l t
im

e
(s

)

Figure 2.2: Lapack method running time is O
(
min(mn2,m2n)

)
.

As you can see on these figures, we are very far from an acceptable
algorithm for our purposes: it takes about 20 minutes for a matrix with only
1,200 documents, while we want to be able to handle billions of documents.
Of course, we are using a single machine but it is obvious that a cubic
running time is not admissible for us. Different reasons can explain this
inadequacy:

• First, this method computes the full SVD of the matrix, while we
have explained that we only need a few hundreds singular values and
associated singular vectors.

• Second, the bidiagonalization technique does not take into account
the sparsity of the matrix. Even it is initially sparse, it becomes dense
after the first iteration:

H

∗ ∗ 0 0
∗ 0 0 0
0 0 ∗ 0
∗ ∗ 0 ∗
∗ 0 ∗ 0

=

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

Thus, not only this method is very slow, but it is also not usable from
a data storage perspective.

Nevertheless, trying this common algorithm and testing it on real data al-
lowed me to have a better understanding of the different issues, and to have
an initial point of comparison.

2.2 Power Method 17

2.2 Power Method

The next method we wanted to try to perform SVD is called the Power
Method. It is one of the simplest methods for finding the largest eigenvalue
and corresponding eigenvector of a square, diagonalizable matrix. We will
first consider this technique, and then we will see how we can adapt it for
our purposes.

2.2.1 Standard Power Method

Suppose A is an n × n diagonalizable matrix. The algorithm starts with
a vector b0 ∈ Rn, which may be a random vector, or an approximation of
the dominant eigenvector if available. Then, the method is described by the
iteration

bk+1 =
Abk

||Abk||
Under the following assumptions

• A has an eigenvalue λ1 that is strictly greater in magnitude than the
other ones.

• b0 has a nonzero component in the direction of the corresponding
dominant eigenvector v1.

then (bk) converges to an eigenvector associated with the dominant eigen-
value. Consequently, as Av1 = λ1v1, the sequence

(
bk

T Abk

bk
T bk

)
converges to

λ1.

This can be proven easily: let λ1, . . . , λn be the n eigenvalues of A and
let v1, . . . ,vn be the corresponding eigenvectors. Suppose that λ1 is the
dominant eigenvalue, i.e., |λ1| > |λj | for j > 1. As the n eigenvectors are
linearly independent, they form a basis for n-dimensional space. Hence, the
starting vector b0 can be expressed as the linear combination

b0 =
n∑

i=1

civi

We have assumed that c1 6= 01. Then it follows that

Akb0 =
n∑

i=1

ciA
kvi =

n∑

i=1

ciλ
k
i vi = c1λ

k
1

(
v1 +

n∑

i=2

ci

c1

(
λi

λ1

)k

vi

)

︸ ︷︷ ︸
−→v1

Since bk ∝ Akb0, we conclude that (bk) converges to (a multiple of) the
eigenvector v1. We can also observe that the convergence is geometric, with
ratio |λ1

λ2
|.

1It is the case with probability 1 if b0 is chosen randomly.

2.2 Power Method 18

2.2.2 Adaptation to our problem

Computing the dominant singular value and associated singular
vectors

The power method was originally designed to compute the dominant eigen-
value of a diagonalizable square matrix. However, we are working with
rectangular matrices and we want to calculate the singular values. We can
use the relations between the Eigenvalue Decomposition and the SVD that
we have seen in section 1.2.2 page 10.

In order to compute the left and right singular vectors associated with
the dominant singular values, we now start with 2 vectors u0 and v0, which
may be random vectors as well. Then, the algorithm is described by these
iterations:

uk+1 =
Avk

||Avk||

vk+1 =
AT uk+1

||AT uk+1||
This is equivalent to

uk+1 =
AAT uk

||AAT uk||

vk+1 =
AT Avk

||AT Avk||
Thus, (uk) converges to an eigenvector associated with the dominant eigen-
value of the symmetric square matrix AAT and (vk) to an eigenvector asso-
ciated with the dominant eigenvalue of the symmetric square matrix AT A.
Referring to section 1.2.2, we conclude that these are also the left and right
singular vector associated with the dominant singular vector of A. Note
that we never have to compute the matrices AAT and AT A explicitly (they
would be very large).

Computing several singular value and associated singular vectors

The standard power method can find only the dominant eigenpair (λ1,v1).
For our purposes, we need to compute some subsequent ones2. If A is
symmetric3, it can be proven that if u1 = v1

||v1|| , then A′ = A − λ1u1u1
T

has the same eigenvalues and eigenvectors as A, except that λ1 has been
replaced by 0. Thus, we just have to apply the power method to A′, and so
on. This is called the Deflation Method .

2Actually, we need to compute singular values but we just saw that we can still use
similar iterations.

3In our case, AAT and AT A are of course symmetric.

2.2 Power Method 19

We definitely do not want to compute the matrix A − λ1u1u1
T that is

not sparse anymore. Thus, what we are actually doing in the code is maybe
closer to the Gram-Schmidt Process, even if it is equivalent to the Deflation
Method. The Gram-Schmidt process is a method for orthogonalizing a set
of vectors. Practically speaking, to compute the ith dominant singular value
and associated singular vectors, we restart the power method on A, but at
each iteration, we orthogonalize the newly computed singular vectors with
regards to the previously computed ones. Let uj and vj denote the singular
vectors associated to the jth singular values. Let suppose that the first
i − 1 singular values and corresponding singular vectors have already been
computed and that we wish to compute the next ones. The algorithm is
described by these iterations:

ui
k+1 =

Avi
k

||Avi
k||

ui
k+1 ← ui

k+1 −
i−1∑

j=1

projfuj ui
k+1

vi
k+1 =

AT ui
k+1

||AT ui
k+1||

vi
k+1 ← vi

k+1 −
i−1∑

j=1

projfvj vi
k+1

where

• ũj and ṽj represent the previously estimated singular vectors.

• projv u is the projection operator defined by

projv u =
〈u,v〉
||v||

v

||v|| =
〈u, v〉
〈v, v〉v

Thus, to orthogonalize a vector, we simply project it orthogonally onto the
subspace generated by the singular vectors that have already been estimated
and the result is the difference between the original vector and this projec-
tion.

We can easily see that this technique is equivalent to the Power Method
applied to A− λ1u1u1

T , but it allows us to work only on sparse matrices.

2.2.3 Analysis

Compared to the method of Lapack, the Power Method has several advan-
tages for our problems:

2.2 Power Method 20

• It is adapted to sparse matrices. Extra storage is needed only for each
singular vector and value.

• The Power Method is very easy to code and to adapt to a parallel
implementation, because it only needs matrix-vector multiplications.
On the contrary, Lapack is a library written in Fortran and could
be more difficult to adapt to our purposes. Furthermore, it would
certainly be more difficult to make this package work in parallel.

• This method is suitable when we do not need to compute the entire
SVD of a matrix.

Thus, depending on the degree of sparsity of the matrix and of the
number of singular values we need to compute, this method can be much
faster than Lapack. Figure 2.3 shows the computational time in seconds
with respects to the number of estimated singular values and associated
singular vectors. This graph was obtained for a document-term matrix of
10, 000 documents (i.e., 10, 000 rows), each one containing on average 280
different words (i.e., 280 non-zero entries per row on average). The stopping
criteria I used was the relative precision of the singular values. This graph
shows the computational times for three different precision parameters.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

number of estimated singular values

co
m

pu
ta

tio
na

l t
im

e

precision: 0.1
precision: 1e−3
precision:1e−6

Figure 2.3: The power method is much faster than Lapack, because we do
not need to compute the full SVD.

As you can see, to compute the largest 100 singular values of a document-
term matrix that contains 10, 000 documents, this method needs 1 minute
for a precision of 10−3 and 20 minutes for a precision of 10−6, while the
technique implemented in Lapack needs about 10 minutes for a matrix of
only 1, 000 documents (see Figure 2.1). Note that these experiments have
always been runned on a single machine.

2.3 Generalized Hebbian Algorithm 21

However, this method is not sufficient because it becomes more inaccu-
rate as we calculate more singular values. Error is introduced at each step
and this error accumulates as the process continues. Beyond the first few
singular vectors and values, rounding error reduces the accuracy below ac-
ceptable limits. Furthermore, even it is faster than Lapack, it is still too
slow, considering the huge data that we need to process.

2.3 Generalized Hebbian Algorithm

In this section, we consider an approach which is quite different from the
previous ones, even it has some relations with the power method, since it
only requires matrix-vector multiplications. This method uses the General-
ized Hebbian Algorithm (GHA), which was introduced by Oja and Karhunen
in 1984 [16]. They demonstrated that Hebbian learning could be used to de-
rive the first eigenvector of a dataset given observations (vectors) presented
serially. The idea was extended in 1989 by Sanger [19] to allow further eigen-
vectors to be computed within the same framework. It has been applied by
Gorrell for language processing applications in 2006 (see for example [12]
and [13])4.

The term Hebbian is usually used to describe unsupervised learning al-
gorithms that consist of a neural network whose weights are continuously
adapted to the input data. The goal of Hebb rules is to reinforce what hap-
pens often: to simplify, the network is satisfied with what it has produced
and reinforces it (self-satisfaction principle), without knowing if it was good
or not.

2.3.1 Oja Model

GHA is originally used to compute the first eigenvector of a dataset (the
relation between eigenvectors and singular vectors has been examined in
section 1.2.2 page 10). This is related to Principal Component Analysis
(PCA). The data consists of a set of m observations, which are represented
by n variables. The observations are considered as row vectors of an m× n
matrix A. In the LSA case, A is the document-term matrix: an observation
is a document and n is the number of words in the dictionary.

PCA usually involves the computation of the eigenvectors of the covari-
ance matrix AT A. The Oja model allows to compute the first eigenvector
of AAT by presenting the data (i.e., the documents, the rows of A) serially,
to a neural network. The n components of an observation are multiplied by
connection weights and summed to generate an output. The weights of the

4As far as I am concerned, I have studied this kind of algorithms during J.-P. Nadal
course Statistical Modeling Inference in Neurosciences.

2.3 Generalized Hebbian Algorithm 22

network are then modified according to this output (Hebb rule):

u(t + 1) = u(t) + λ
(
uT (t) · a

)

︸ ︷︷ ︸
output

a

where:

• u is the weight vector that converges to the dominant eigenvector of
AT A

• a is an input vector (data observation)

• λ is the learning rate

Intuitively, the eigenvector u is updated by adding the input vector a weighted
by the output uT · a, which represents the extent to which a already resem-
bles to the eigenvector u. In this way, the strongest direction in the input
comes to dominate.

2.3.2 Stanger Model

This foundation has been extended by Stanger to discover the next dominant
eigenvectors. The idea is very similar to the one we have seen in the previous
section (Gram-Schmidt process). The update needs to be made orthogonal
to previously computed eigenvectors: they are removed from the training
update in order to take them out of the picture. Let up denote the pth
eigenvector:

up(t + 1) = up(t) + λ
(
uT

p (t) · a
)

a−

∑

i≤p

(uT
i · a)ui

Note that we also remove the projection on the current eigenvector, in order
to keep the vectors normalized.

To recover the original formulation of Stanger, let’s define:

• ci =
(
ci,1 . . . ci,n

)T , the ith eigenvector

• x =
(
x1 . . . xn

)T the input vector

• yi = ci · x the activation.

Then

cij(t + 1) = cij(t) + λ(t)

yi(t)xj(t)− yi(t)

∑

k≤i

ckj(t)yk(t)

2.4 Sampling methods 23

2.3.3 Analysis

I have implemented this method which has several advantages. The main
difference between GHA and the other standard algorithms we have studied
is that GHA is an incremental approach. It is not a batch algorithm where
we process the whole matrix at once. This has the benefit that the full data
matrix does not have to be held in memory. The only persistent storage
requirement is the developing singular vectors themselves.

Thus, it is appropriate in a different range of circumstances. It allows
larger datasets to be processed5. When the entire matrix is not available
from the start, GHA is also a very useful algorithm. The incremental ap-
proach of GHA seems appropriate to prevent us from having to recompute
the SVD each time a new document is added to the dataset.

As noticed by Gorrell, the method is appropriate in situations where the
dataset is very large or unbounded and time is not a priority. These are not
exactly the concerns for Google and for my supervisors. Yes, the dataset
is huge, but Google also has the ability of storing it easily. Because we do
not need to work on a single machine, the incremental approach is no longer
that interesting. Besides, Google has such an important computing capacity
that recomputing the SVD when new documents are added to the dataset
is not a major problem.

Computational time is more important for our purposes, and our differ-
ent experiments were very disappointing because this method is much too
slow. We need to loop several times on the whole dataset and to restart the
process for each new singular triplet (singular value and associated singular
vectors). In addition, as for the Power Method, the error accumulates for
each singular triplet.

I finally think that this method is particularly interesting and has many
advantages compared to the Power Method, but it is not really adapted to
our problem because Google has different constraints (memory is not an
issue, no need for adaptivity).

2.4 Sampling methods

In the beginning of my internship, approximating the SVD of a large matrix
by using sampling methods was the main idea of my supervisors. Thus, most
papers I read during the literature review stage were using this principle.
This family of algorithms is of great interest in many cases and for many
applications, but we finally realized that using sampling was finally not
necessary for Google because its computing resources are so important that
standard linear algebra methods applied on the whole matrix are actually
sufficient, as we will see in the next section.

5Memory becomes quickly the bottleneck, the limiting factor of a standard SVD algo-
rithm, as we will see later.

2.4 Sampling methods 24

In the following, we introduce the main principle and mathematical the-
orem behind these techniques.

2.4.1 Overall view

Instead of computing the SVD of the entire matrix, the main idea of this
family of algorithms is to sample a constant number of rows and columns
of the matrix, scale them appropriately to form a small matrix, say S, and
then compute the SVD of S, which is a good approximation to the SVD of
the initial matrix. Accuracy is not very important for our application (for
example for LSA): the exact projection to the lower dimensional space is
not necessary, since we are usually mainly interested in a nearest neighbor
search.

The sampling process used to chose the rows (and the columns) of the
sub-matrix is usually based on the norm of these rows.

2.4.2 Results

As in section 1.2.1 page 10, let Xk = UkΣkV
T
k be the best rank-k approxi-

mation of the original matrix X, and X̂k be the rank-k approximation of X
obtained by this family of sampling method. The results are usually of the
form (see for example [9])

||X − X̂k||F ≤ ||X −Xk||F + ε||X||F
Note that ||X||F might be significantly larger than ||X −Xk||F .

Other algorithms achieve results of the form (see for example [7])

||X − X̂k||F ≤ (1 + ε)||X −Xk||F
These bounds are usually based on the Johnson-Lindenstrauss Lemma [14],

which shows that any set of n points in high dimensional Euclidean space
could be embedded into an O

(
log n
ε2

)
dimensional space without distorting

the distances between any pair of points by more than a factor of 1± ε, for
any 0 < ε < 1.

We also thought about performing SVD on such small sub-matrices sev-
eral times (in parallel), and then merging the results to reduce the variance
and lead to an improved approximation. However, merging different SVD
is of course not straightforward because the resulting singular vectors need
to stay orthogonal.

I do not go into too many details about these methods, since another
algorithm solves the problem more easily. I think that it is important to
know when to stop going into one direction when another one already meets
the requirements.

2.5 Lanczos algorithm 25

2.5 Lanczos algorithm

We finally tried the SVD solvers implemented in SVDPACK and ARPACK
(ARnoldi PACKage). Both algorithms are based on the Lanczos algorithm
but ARPACK is easier to parallelize. I spent some time to adapt both
methods to make them work in Google infrastructure, but I obviously didn’t
have to re-implement them. We explain below what are the main ideas,
trying to emphasize the connections with the algorithms that we have seen
so far.

2.5.1 Overview

The Lanczos method is a technique used to solve large, sparse, symmet-
ric eigenproblems (we remind that SVD and Eigenvalue Decomposition are
closely related. See section 1.2.2 page 10). Thus, we are using it to com-
pute the eigenvalues of Y = XXT (or XT X). The method involves partial
tridiagonalizations of the symmetric matrix. Note that this is similar to the
algorithm implemented in Lapack, whose first step was to bidiagonalize the
initial rectangular matrix. We have seen that Householder transformations
can be adapted for this purpose (see section 2.1.1 page 13). However, they
destroy sparsity and intermediate large dense matrices arise during the re-
duction. This suggests that the elements of the tridiagonal matrix have to be
computed directly. This is done during the so-named Lanczos iteration [11].

This iteration halts before complete tridiagonalization is obtained. This
is the second main contribution of this technique. Information about Y ’s
extremal eigenvalues tends to emerge long before the tridiagonalization is
complete. This makes the Lanczos algorithm very interesting in our case
because we only need the largest singular values. More precisely, the method
generates a sequence of k × k tridiagonal matrices Tk with the property
that the extremal eigenvalues of Tk are progressively better estimates of the
extremal eigenvalues of Y .

We do not enter in the details of the Lanczos iteration but we just men-
tion that it is closely related to the Power Method that we have seen in
section 2.3 page 20. Indeed, as for the Power Method, the multiplication by
the original matrix (in this case Y) is the only large scale linear operation.
Hence, it is easy to parallelize. During the iterations of the power method,
whilst getting the ultimate eigenvector Anb0, we also got a series of vectors
Aib0, 0 < i < n − 1, which were eventually discarded. The Lanczos algo-
rithm saves these information and uses the Gram-Schmidt process that we
have seen in section 2.2.2 page 18, to reorthogonalize them into a basis6.

6They form the Krylov subspace, but we prefer no to enter into too much details.

2.5 Lanczos algorithm 26

2.5.2 Parallel computation

We are using MPI (Message Passing Interface) for the parallel implemen-
tation of this method. MPI is a protocol that allows synchronization and
communication functionality between computers. Our MPI implementation
consists of a specific set of routines callable from the C++ main program.

We already mentioned that the only significant operation of the Lanczos
algorithm is the matrix-vector multiplication between Y = XXT and a
given vector. Thus, this is very easy to parallelize. Let’s consider the case
of a m × n document-term matrix X. We assume that N machines are
available (N could be of the order of hundreds). We simply decide to split
the m documents in N parts and each machine i ∈ {1 . . . N} is responsible
for building its own document-term matrix Xi. We make sure that these
matrices have the same number of columns, even if the words contained in
each set of documents may be different.

X =

X1
...

XN

Then, implementing the multiplication between XXT and a given vector is
almost straightforward. To multiply the transpose XT by a given vector u,
each machine i simply performs the multiplication between the transpose of
the locally stored matrix Xi and u, and all the results are then summed.
To multiply X by the vector u′ = XTu, we naturally split u′ into N parts
whose sizes correspond to the number of rows of the N local matrices. Each
machine multiplies its matrix Xi by its associated part of u′ and the results
are then merged.

Of course, we remind that we use a format adapted to sparse matrices
to store X, that is, only the nonzero entries are stored.

I just mentioned in this section the parallelization of the matrix-vector
product because it is related to the SVD solver. However, almost everything
I did during my internship used a parallel implementation, since I was deal-
ing with gigabytes or even terabytes of data almost on a daily basis. This
is very common and Google has its own specific tools, like MapReduce [5],
a framework for distributed computation, based on functional languages’
concepts of Map and Reduce.

2.5.3 Experimental results

In order to compare with the previously tested methods, we first tested this
algorithm on a single machine, without any distributed computation. Some
results are shown on Figure 2.4.

2.5 Lanczos algorithm 27

0.0e+00 2.0e+07 4.0e+07 6.0e+07 8.0e+07 1.0e+08 1.2e+08
0

20

40

60

80

100

120

140

160

number of nonzero entries

co
m

pu
ta

tio
na

l t
im

e
(s

)

number of s. v.: 2
number of s. v.: 5
number of s. v.: 10
number of s. v.: 50
number of s. v.: 75
number of s. v.: 100

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

number of estimated singular values

co
m

pu
ta

tio
na

l t
im

e
(s

)

Figure 2.4: Computational time of the Lanczos algorithm on a single ma-
chine.

The left graph shows the computational time in seconds with respect to
the number of nonzero entries in the original matrix X. Note that we still
use document-term matrices. Each curve corresponds to a certain number
of estimated singular triplets (singular values and associated singular vec-
tors). On the contrary, the right figure represents the computational time
with respect to the number of computed singular triplets and each curve
corresponds to a certain matrix size.

The main purpose of these two figures is to show that computational time
is linear in the number of nonzero entries and in the number of estimated
singular triplets. This is of course incomparably better for our purposes
than the initial algorithm, whose complexity was O

(
min(mn2,m2n)

)
, where

m×n is the size of X. For instance, on a single machine, we can now compute
the largest 100 singular values of a matrix containing 100, 000 documents in
about 2 minutes, while it would have taken about 6 years of computation
with the method implemented in Matlab and Lapack (if we assume that we
have enough memory to store the full matrix, which is of course impossible).

We can also notice that the limiting factor is now memory: Figure 2.4
has been obtained by running experiments with the biggest dataset I could
use on a single machine before running out of memory. This explain why
methods like Generalized Hebbian Algorithm (see section 2.3 page 21) or
Sampling techniques (see section 2.4 page 23) are very interesting for many
people because the main bottleneck is now memory and not time.

Of course the implementation is originally designed to be used in paral-
lel. Without going into confidential details, let me just say that this method
is usually used to perform SVD on a document-term matrix containing a
number of documents which is usually of the order of the whole French Web.
It then runs on a few hundreds of machines.

These results met the requirements of my supervisors and we could then
think in more details about different applications of this tool.

Part II

Applications

Chapter 3

Latent Semantic Analysis

3.1 Motivation

Latent Semantic Analysis is one of the most famous Information Retrieval
technique. Information retrieval is the science of searching for documents
or for information in documents. Web search engines such as Google are
certainly the most visible Information Retrieval applications.

The problem is very simple: a user enters a query (usually a few words),
and the goal is to retrieve documents from the Web that are relevant for
this query. Most approaches work by literally matching terms in documents
with those of the query. Thus, documents that contain the most number of
occurrences of the query terms are simply returned.

These methods have several important drawbacks. Users think about a
certain conceptual content that they express with some words. The problem
is that these words, considered individually, do not provide reliable evidence
about what the user is thinking about. We usually distinguish two main
difficulties:

Synonymy: There are usually many ways to express a given concept.
Users in different contexts, knowledge or linguistic habits will describe
the same idea using different terms. Thus, many relevant documents
usually use a different vocabulary than the one used in the query.
These documents can not be retrieved.

Polysemy: Most words have more than one distinct meaning. In differ-
ent contexts or when used by different people, the same term (e.g.
”surfing”) takes on varying significances (”surfing the web”, ”surfing
at Malibu beach”). Returning documents that contain all or at least
some of the words in the query is usually not optimal, since many
documents may contain some query terms, while dealing with totally
different topics.

3.2 Principle 30

To summarize, some documents may be relevant without being returned be-
cause they do not contain the specific terms of the query, while non-relevant
documents could be retrieved because they contain some query words, even
if these words are used with two different meanings in the document and in
the query.

3.2 Principle

Latent Semantic Analysis (LSA) is a method that was introduced by Deer-
wester et al. in 1990 [6]. The main principle of LSA is to assume that there
is some underlying (latent) semantic structure in the data that is partially
hidden by the randomness of word choice. The goal is to use statistical
techniques to estimate this latent structure and get rid of the obscuring
noise.

A document (or a query) is actually considered as being a sample of
an ideal document (which is much longer) that would contain all the words
related to the considered topic. The goal of LSA is to find out what are the
terms that are not explicitly in the documents but are related to them yet
(i.e., the ”latent semantic”).

For instance, let’s assume that a user query is simply ”elevator”. This
user would also like documents containing the word ”lift” to be returned,
although documents rarely use both terms. LSA approach utilizes the fact
that whilst, for instance, ”elevator” and ”lift” might not appear together,
they will each appear with a similar set of words (for example, ”building”
and ”floor”). Ideally, the method will automatically find out a superfeature
that captures the concept of ”liftness” of a document.

3.3 Usage of the SVD for Latent Semantic Anal-
ysis

3.3.1 Vector Space Model

LSA is based on what is usually referred to as the Vector Space Model [17],
where documents as well as queries are represented as feature vectors. Each
feature takes a dimension in the vector space in which the data positions
itself. The theory is that the relationships between the positions of the data
points in the space tell us something about their similarity. A dataset takes
the form of a set of vectors, which can be represented as a matrix.

In our case, each dimension corresponds to a term that occurs in the
document collection. The matrix that represents the dataset is the m × n
document-term matrix X, that we have introduced in section 1.3.1 page 11.
Note that in this representation, the position and the order of the words in

3.3 Usage of the SVD for Latent Semantic Analysis 31

a document are not taken into account. A document is simply represented
by the words it contains. This is usually called the Bag-of-Words model.

As similarity can be measured using the positions of the points in the
Vector Space, we could use the Euclidean distance between 2 points to de-
termine if the corresponding documents are similar1. This finally means
that we just compare the rows of the document-term matrix that corre-
spond to the 2 documents that we want to compare2. However, we have
already explained that some terms may appear in a document and not in
another one, even if both documents are dealing with the same concepts.
On the contrary, some terms can be in two different documents but with a
different meaning. LSA uses the Singular Value Decomposition to transform
the document-term matrix so that distances in the Vector Space make more
sense.

3.3.2 Interpretation of the SVD model

LSA replaces the full document-term matrix X with a low-rank approxima-
tion Xk. The downsizing is of course achieved using truncated SVD. We
only keep the k largest singular values and corresponding singular vectors
(k is typically empirically selected in the range of 100 to 300).

X Uk Σk V T
k

x1,1 . . . x1,n

...
. . .

...

xm,1 . . . xm,n

=

[
u1,1 . . . u1,k

]

...

[
um,1 . . . um,k

]

σ1 0
. . .

0 σk

v1,1
...

vk,1

 . . .

v1,n
...

uk,n

SVD can be viewed as a technique for deriving a set of k uncorrelated
factors. These factors may be thought of as artificial semantic concepts.
The hope is that they represent extracted common meaning components of
many different words and documents. Each document (resp. term) is then
represented by its vector of factor values. These values can be thought of as
weights indicating the strengths of association between the document (resp.
term) and the underlying concepts. That is, the meaning of a particular
term or document can be expressed by k factor values, or equivalently, by
the location of a vector in the corresponding k-dimensional space, which is
usually referred to as the LSA-space or the concept space (while the original
n-dimensional space is referred to as the term-space because each axis cor-
responds to one term). The vectors that represent documents (resp. terms)

1We will see later that other distance measures can be used, like the dot-product
between the 2 vectors, or the cosine.

2We could compare columns of the matrix to estimate the similarity between words.

3.3 Usage of the SVD for Latent Semantic Analysis 32

are of course the rows of the truncated singular vector matrix Uk (resp. Vk)
(weighted by the singular values).

3.3.3 Interests of this low-rank approximation

Let’s summarize the different reasons that explain why the SVD is a tool
adapted to the problem that we have described in this chapter.

Data compression

SVD allows to store an approximation of the huge original document-term
matrix as the product of 3 smaller matrices. In particular, it removes re-
dundancy because data are represented on orthogonal axis. Then, in case
we want to use any Machine Learning algorithm on the data (for instance
for classification), it will be much easier to use them (and they will certainly
work better) if they are applied to data that are represented by vectors of
about 100 components than to data with hundreds of thousands compo-
nents.

Noise reduction

The initial document-term matrix is presumed noisy. The SVD can reduce
the weight of occurrences of accidental or anecdotal terms in some docu-
ments.

Smoothing

As we already discussed, the original document-term matrix is overly sparse.
The dot-product between 2 rows is often meaningless when the vocabularies
used in the documents are dissimilar. When multiplying all three matrices
Uk, Σk and V T

k together to reconstruct an approximation of the original
matrix, the zeros are replaced by values that can be thought of as estimation
of the semantic relation between the considered document and each word.
This allows to handle the synonymy problem.

A single vector space

LSA maps both documents and words in the same k-dimensional space,
so it is much easier to compare them. A new query can for example be
represented in the LSA-space by the centroid of the words it contains, or
can even be considered as a small document. In both cases, it becomes
straightforward to look for the documents that are the nearest neighbors of
the query.

3.3 Usage of the SVD for Latent Semantic Analysis 33

3.3.4 Visualization purpose

Even if visualization was not the main concern of my supervisors, it is of-
ten an important interest of this kind of dimension reduction methods. I
have tried to compute the first five singular triplets of a corpus of 10, 000
documents which are labelled ”pornographic” or ”not pornographic”. The
projection of the documents on the resulting 5-dimensional concept-space is
presented on Figure 3.1.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

dimension 1

di
m

en
si

on
 2

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

dimension 3

di
m

en
si

on
 2

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

dimension 5

di
m

en
si

on
 4

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

dimension 3

di
m

en
si

on
 4

Figure 3.1: Projection of a corpus of 10, 000 labelled documents on the re-
sulting 5-dimensional LSA-space.

Red points represent documents with some pornographic contents. As we
can notice on the two figures on the top, the second axis seems to distinguish
porn and non-porn documents. This could be thought of as the concept
embedded by the second dimension. Of course, the concepts are corpus-
dependent. For this experiment, ”pornography” is one of the most important
concepts which emerge during LSA because the considered corpus contains
a significant part of porn documents.

3.4 Preprocessing of the document-term matrix 34

3.4 Preprocessing of the document-term matrix

In this part, we will focus on the original document-term matrix X. We have
explained in section 1.3.1 page 11 that the elements of X are the number
of occurrences of each word in a particular document, i.e., Xi,j denotes the
frequency in which term j occurs in document i.

Instead of directly performing SVD on this matrix, different techniques
are available to preprocess it in such a way as to further increase the effec-
tiveness of the method. Indeed, words contribute to varying extents to the
semantic profile of a document. Very common words are usually referred
to as Stop-words and some systems even filter them out prior to other op-
erations. For instance, the word ”the” has little impact on the meaning of
passages in which it appears. More generally, a word which distributes itself
evenly among the documents in a collection is of little value in distinguishing
between them. LSA can therefore be made more effective by reducing the
impact of such words and increasing the impact of less evenly distributed
terms3.

3.4.1 Tf-idf scheme

Tf-idf [18] is certainly the most popular weighting scheme used in Informa-
tion Retrieval to evaluate how important a word is to a document. Tf-idf
stands for ”Term frequency - inverse document frequency”. It modifies each
value of the document-term matrix. An Xi,j entry with high Tf-idf score
implies a strong relationship between the word j and the document i.

The Tf-idf weight is the product of two terms

tf-idf(i, j) = tf(i, j) ∗ idf(j)

Term frequency: tf(i, j) is simply the number of times term j appears
in document i. This value is actually often normalized to prevent a
bias towards longer documents:

tf(i, j) =
n(i, j)∑
k n(k, j)

where n(i, j) is the number of occurrences of word j in document i.
The intuition is that the more frequently a given word occurs in a
document, the more important it is for this document.

Inverse document frequency: This is a measure of the general impor-
tance of term:

idf(j) =
|D|

|{d : j ∈ d}|
3We also get rid of the most infrequent terms that are usually typographic mistakes.

3.5 Relatedness measure 35

where |D| is the size of the corpus and |{d : j ∈ d}| equals the number
of documents in which term j appears. Hence, the more documents
a given word occurs in, the less discriminating this word is and the
smaller its idf score is. Hence, this weight tends to filter common
terms.

3.4.2 Other normalization methods

There is a multitude a such preprocessing techniques (See for example [4]).
I have tried and compared several of them but let’s just give the usual
structure of most normalization schemes. The term weight is usually given
by

Li,jGjNi

where

• Li,j is the local weight for term j in document j

• Gj is the global weight for term j

• Ni is the normalization for document i to compensate for discrepancies
in the lengths of the documents

For example, choosing Li,j = 1 + log n(i, j), Gj = 1 and Ni = 1√P
k Li,k

(co-

sine normalization) turned out to be an effective scheme for our purposes.

3.5 Relatedness measure

We have seen in section 3.3.1 page 30 about the Vector Space Model that sim-
ilarity between data can be measured by using the locations of the points in
the Vector Space. For instance, the dot-product of two rows (resp. columns)
of the document-term matrix X is a common measure to determine if the
two corresponding documents (resp. terms) are similar. There are basically
three sorts of comparisons of interest: those comparing two terms, those
comparing two documents, and those comparing a term and a document.
Let’s see how to perform these comparisons once we have performed SVD
on the original document-term matrix (possibly after a preprocessing step).

3.5.1 Comparing two terms or two documents

The dot product between two column vectors of X reflects the extent to
which two terms have a similar pattern of occurrences across the set of
documents. The matrix XT X contains all these dot-products. After the
SVD, X has been approximated by Xk = UkΣkV

T
k and

XT
k Xk = VkΣkU

T
k UkΣkV

T
k = VkΣ2

kV
T
k

3.5 Relatedness measure 36

Thus, the i, j cell of XT
k Xk can be obtained by taking the dot product be-

tween the ith and jth rows of the matrix VkΣk. That is, if one considers the
rows of VkΣk as coordinates for terms, dot products between these points
give the comparison between terms.

The analysis for comparing two documents is similar, except that in this
case we need to consider the dot product between two rows of the document-
term matrix. We naturally need to consider the rows of UkΣk as coordinates
for documents.

3.5.2 Comparing a term and a document

Originally, the fundamental comparison between a term and a document is
the value of an individual cell of X. After the SVD, X ≈ Xk = UkΣkV

T
k ,

so the i, j cell of Xk is obtained by taking the dot product between the ith
row of the matrix UkΣ

1/2
k and the jth row of the matrix VkΣ

1/2
k . Thus,

saying that the same space can be used to represent documents and terms
was not exactly true. Yes, the vectors that represent documents and terms
have the same number of components, but it is not possible to make a single
configuration of points in a space that will allow all kind of comparisons.
The spaces we need to use differ only by a stretching of the axes by a factor
of Σ1/2

k yet.

3.5.3 Considering new queries

It is important to be able to compute appropriate comparison quantities
for objects that did not appear in the original analysis. Indeed, we need
to be able to compare a completely novel query, with the documents and
terms of the corpus. A new query is also considered as a bag-of-words
and can be thought of as a mini-document or pseudo-document. Let Qnew

denote its vector in the original n-dimensional term-space. We need to derive
its representation Unew

k that we will be able to use just like other rows of
Uk in the previous comparison formulas. If the query is a real document
(i.e., a row of X), we should recover the corresponding row of U . Hence,
Qnew = Unew

k ΣV T
k , and we get directly Unew

k = Qnew
k VkΣ−1

k .
Thus, to compute the similarity of a new query Qnew and a term i, we

can now refer to the previous section and directly compute the dot-product
between Unew

k Σ1/2
k and a row of VkΣ

1/2
k :

〈Unew
k Σ1/2

k , V i
kΣ1/2

k 〉 = Unew
k ΣkV

i
k

T

= Qnew
k VkΣ−1

k ΣkV
i
k

T

= Qnew
k VkV

i
k

T

3.5 Relatedness measure 37

3.5.4 Other similarity measures

So far, we have always compared two data-points by computing the dot-
product between their corresponding vectors. Instead of the dot-product,
the cosine of the angle between the vectors is also frequently used. The only
difference is of course the normalization by the norms of the vectors. As we
will see later, this has a major influence on the results because this allows
not to give a higher weight to long documents and frequent words. We have
also tried to simply use the Euclidean distance as a measure of relatedness.
Furthermore, note that, depending on the papers, authors sometimes do not
scale each component by the corresponding singular value.

3.6 Evaluation – Word List Expander 38

3.6 Evaluation – Word List Expander

LSA can be used for several applications. We already spoke about Document
Retrieval because it was the original goal of the method. In this section, we
evaluate its performances for an application that we can refer to as a Word
List Expander. Basically, the purpose is to create a list of words related
to a specific topic. The user provides a small list of seed words as input
and the program generates a new list of words that are related with this
input list. Hence, this is a straightforward application of Latent Semantic
Analysis: the list of input words is considered as a new query and we look
for the terms that are its nearest neighbors in the concept-space, by using
the relatedness measures defined in the previous section.

This application is closely related to Query Expansion, whose goal is to
add a few words to the initial query to improve the quality of search results.
However, our approach is more general, in the sense that we are looking for
a long list of words (several hundreds) related to a given topic, but which are
not necessarily synonyms of the seen words. They simply often co-appear
with them.

Note that this tool is used in production code and is already helpful for
people in the department I was working for.

3.6.1 Precision-Recall trade-off

To evaluate the quality of the words that belong to the automatically gen-
erated list, we consider each of them as being the unique feature of a binary
classifier. For instance, suppose we run the program in order to generate
a list of words related to sport. The quality of the generated list will be
measured as the average score of each term of the list. To attribute a score
to a given term (e.g., ”rugby”), we consider a binary classifier that retrieves
every documents that contains the word ”rugby”. Once each term is associ-
ated to its corresponding classifier, we just need to measure the performance
of these classifiers by using standard measures, like Precision and Recall .

The following table (also called Confusion Matrix) represents the rela-
tionship between actual classification and predicted classification:

relevant not relevant

retrieved
a b

(true positive) (false positive)

not retrieved
c d

(false negative) (true negative)

3.6 Evaluation – Word List Expander 39

The two main measures of performance which reflect the effectiveness of
a classifier are:

Precision: It is the proportion of retrieved documents that are relevant
to the search:

precision =
a

a + b
=
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

Recall: It is the proportion of relevant documents that are retrieved (out
of all relevant documents available):

recall =
a

a + c
=
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|

It is trivial to achieve precision of 100% (by never returning any doc-
ument) or recall of 100% (by returning all documents in response to any
query). Therefore, one of these two measures alone is not enough. A trade-
off is necessary. Figure 3.2 represents the typical relation between precision
and recall.

Figure 3.2: Typical trade-off between precision and recall.

The so-called F-measure is commonly used to combine and balance pre-
cision and recall. It is defined as the weighted harmonic mean of precision
and recall:

Fα =
(1 + α)(precision ∗ recall)

α ∗ precision + recall

3.6.2 Experimental results

We have experimented our Word List Expander application by applying
Latent Semantic Analysis on a significant part of the French Web. The

3.6 Evaluation – Word List Expander 40

Tf-idf scheme (plus cosine normalization) is used to preprocess the original
document-term matrix. The quality of the resulting lists is measured thanks
to a set of labelled documents. For a given list of seed words, we generate a
new list of 200 terms. Figure 3.3 shows the Precision and Recall scores with
respect to the number of dimensions of the LSA space.

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of estimated singular triplets

P
re

ci
si

on

Euclidean
weighted Euclidean
dot product
weighted dot product
cosine
weighted cosine

0 50 100 150 200 250 300 350 400 450 500
0.00

0.05

0.10

0.15

0.20

0.25

Number of estimated singular triplets

R
ec

al
l

Euclidean
weighted Euclidean
dot product
weighted dot product
cosine
weighted cosine

Figure 3.3: Quality of the generated list with respect to the number of di-
mensions of the concept-space and to the relatedness measure.

For this experiment, we tried the three main similarity measures that we
discussed in section 3.5 page 35, i.e., Euclidean distance, dot-product and
cosine. For each of them, we also tried not to weight by the singular values.

We can first see that the influence of weighting by the singular values
is not clear in this experiment. It depends on the used relatedness measure
and on the number of dimensions of the concept space.

We can also note that a 200-dimensional space is usually enough to
achieve good results. Adding too many components may lead to over-fitting.

Finally, we see that the results vary significantly depending on the re-
latedness distance used. If the user is mainly interested in precision, he or
she should use cosine distance, while dot-product is more adapted if recall
matters. This makes sense because common words have a high norm in
the LSA space, so the dot-product between these words and any other term
tend to be higher. Thus, these words (which have obviously a high recall
score because they appear often in documents) have a higher probability
to be contained in a generated list. On the other hand, term vectors are
normalized with the cosine distance, in order to prevent such bias towards
frequent words.

Tables 3.1 shows some examples of lists generated from two different sets
of seed words. We can again notice that the list obtained with dot-product
distance include more generic words, while documents that contains the
terms generated with cosine measure are very likely to deal with the topic
associated to the seed words. The choice of the adapted similarity measure
clearly depends on the application.

3.6 Evaluation – Word List Expander 41

seed words: seed words:
bmw, renault, zidane, barthez,
peugeot, audi ronaldo, maradona

cosine dot-product cosine dot-produt
volkswagen auto okocha football
lexus annonces juninho radio
audi occasion boumsong coupe
subaru km ibrahimovic ligue
koenigsegg moto barthez championnat
kia voiture inzaghi france
saab renault luyindula sport
chrysler automobile bommel club
renault peugeot robinho om
wiesmann petites savidan uefa
maserati voitures ronaldo inter
venturi annonce dindane saison
royce bmw rivaldo champions
peugeot véhicule matuidi euro
dacia sport kovacevic real
bentley véhicules cafu fc
fiat honda pauleta match
hummer tuning sagnol vidéo
lamborghini vendre aruna psg
daihatsu ford lafourcade attaquant
nissan audi beye foot
mazda volkswagen elmander classement
mercedes assurance villareal résultats
rolls automobiles maradona italie
rover mercedes maldini angleterre
bmw occasions coupet sports
picanto diesel messi madrid
chevrolet motos pancrate milan
toyota accessoires uefa finale
bugatti toyota puel juventus

Table 3.1: Lists of 30 terms generated from two different sets of seed words.

Chapter 4

Collaborative Filtering

4.1 Presentation

The other main application of SVD I worked on during the internship is
called Recommender Systems. These are techniques to suggest/recommend
products (like movies, music, books) to users, mostly based on ratings that
users have previously given to some products. Recommender systems em-
ploy different techniques that can be classified into two main categories:

Content-based approach: the user is recommended products that have
commonalities with products he or she has rated highly in the past.

Collaborative Filtering approach: the user is recommended products
that other users with similar preferences also like.

We focus here on Collaborative Filtering [10], although the technique pre-
sented in section 4.3.1, page 50, can also be thought of as a content-based
approach. More precisely, rather than only suggesting products to users,
our task is to predict how a user will rate unseen items, given a history of
the user’s ratings of other items, as well as other users’ ratings of items.

4.1.1 The Netflix database

Recommender systems have achieved widespread success in E-commerce, es-
pecially with the advent of the Internet. Vendors have sought to mine cus-
tomers’ purchase and rating information in order to provide product recom-
mendations catering to users’ individual tastes. For example, Amazon.com
uses recommender systems for book purchases, and Netflix for movie rentals.
Netflix is an on-line movie subscription rental service, which encourages
customers to rate the movies that they watch. The company uses a rec-
ommender system to analyze the accumulated movie ratings and to make
personalized predictions to subscribers based on their particular tastes. In
October 2006, in the interest of improving their current algorithm, Netflix

4.1 Presentation 43

released an anonymized subset of their rating database and offered a $1
million prize to anyone who is able to make a 10% improvement over their
current prediction algorithm [2]. This dataset is comprised of the ratings of
over 480, 000 individual users for a collection of 17, 770 movies, a total of
about 100 million ratings. Each rating is an integral value between 1 and 5.
We have decided to work with this database, because it is one of the largest
available and many recent papers compare their results based on it.

The dataset is distributed along with a probe set of user-movie pairs
upon which algorithms can be tested. The true ratings for these pairs are
known, so an algorithm’s output for the set can be compared to the actual
ratings in order to measure the error rate. The performance of an algorithm
can be measured using root mean squared error (or RMSE). For a vector of
actual ratings of movies θ, and a vector of our predictions for these ratings
θ̂,

RMSE =
√

E
(
(θ̂ − θ)2

)

Netflix reported the RMSE of their current algorithm against the testing
dataset as 0.9514, which represents roughly a 10% improvement over simply
predicting individual movie averages.

4.1.2 Common approaches

Many collaborative filtering algorithms have been described in the literature.
Most of them are based on two basic approaches.

Nearest-Neigbors approach

Most collaborative filtering based recommender systems build a neighbor-
hood of likeminded customers. They find similar users by finding correlation
between their ratings. For instance, the distance between two users can be
the average squared difference of their ratings for movies they both have
evaluated. The basic assumption is that if two people give similar ratings to
most of the movies they rated, then in the future their ratings will continue
to be similar. One can then predict ratings for a user u by using ratings
of other users who are sufficiently similar. Ratings given by its neighbors
for movies that u has not rated yet can be taken to be predictions for those
movies.

SVD

The assumption is that each movie can be described by k parameters saying
how much that movie exemplifies k different aspects like ”action”, ”comedy”,
etc. Correspondingly, each user is described by k values saying how much
he or she prefers each aspect. To combine them together, we just multiply

4.2 Missing values 44

each user preference by the corresponding movie aspect, and then add those
k values to obtain a final opinion of how much that user likes that movie.
Thus, this is a simple linear model. We have seen in the first section of this
report that the Singular Value Decomposition is exactly the mathematic tool
for finding those k aspects and the corresponding values for each user and
each movie, which minimize the resulting approximation error, specifically
the Frobenius norm of the error.

The dataset that consists of triplets (user, movie, rating) can be repre-
sented as an m × n user-movie matrix X, where m is the number of users
and n is the number of considered movies. Xi,j is the rating of user i for
movie j. We can then perform the truncated SVD:

X =
k∑

t=1

σtu·,tv·,tT

u·,t and v·,t are the left and right singular vectors, respectively. As for La-
tent Semantic Analysis, we can think of each dimension as being a concept
or aspect of movies. For example let’s assume that the pth dimension cor-
responds to action movie. The jth value of the right singular vector v·,p
measures ”how much Action does movie j have?”, while the ith value of the
corresponding left singular vector u·,p measure ”how much does user i like
Action movies?”. We just multiply those together to get our estimate for
how much user i would like movie j based only on the amount of Action.
The model further says that the contributions from the different attributes
are just added up linearly (weighted by the singular values) to make a final
prediction.

The formulation of the problem is very similar to Latent Semantic Anal-
ysis. Basically, we just need to compute the truncated SVD of a large sparse
matrix. Ideally, the obtained low rank approximation would complete the
matrix and fill in the unknown values. Predictions are efficiently computed
by taking the appropriate linear combination of factors.

I tried the tools that I have implemented for LSA but the results were
disappointing, since the RMSE computed on the test data was 1.18, which
is even worse than simply predicting movie averages. The main problem of
the usual SVD for this application concerns the missing values.

4.2 Missing values

The main reason that explains the poor results of the usual SVD on the
user-movie matrix is related to the missing values. As for LSA applications,
the data matrix is very sparse. As a matter of fact, each user has rated about
200 movies on average, while the database contains a collection of 17, 770

4.2 Missing values 45

movies. Thus, the matrix only has ratings for approximately 200
17,700 ≈ 1% of

the elements. The rest of the elements are unknown.
These entries are not equivalent to the zero values of a document-term

matrix. For a document-term matrix, a zero entry means that a word does
not appear in a document. It gives us some information and we should
take it into account. By applying a sparse SVD algorithm to a user-movie
matrix, we assume that the missing values are actually zeros. This is clearly
an inadequate assumption because it would mean that the user did not like
the concerned movie. Hence, as the SVD minimizes the Frobenius distance,
it tends to estimate the missing values by ratings close to zeros.

The following sections describe different approaches that we tried to
alleviate this limitation.

4.2.1 Shifted columns

One straightforward way to deal with the missing values is to replace them
by the average ratings for a customer or the average ratings for a movie.
This approach has for example been used by Sarwar et al. in [20]. However,
this method is not useable in our case, because our data matrix is huge and
we have to keep it sparse.

Kleeman et al. have proposed to use a zero-mean method [15]. Each
existing user’s rating is shifted relative to each movie’s average rating. Thus,
missing values are still at zero but they now represent the average rating
of the associated movie, instead of being a bad rating. This effectively
initializes all unrated entries to the movie’s mean before continuing with the
SVD, which can be performed easily because the data matrix is still sparse.
Then, we just need to shift back each column to get ratings’ estimation.

We have tried this method but the RMSE obtained on the test data
(0.97) was still not as good as the result currently achieved by the Netflix
algorithm. If we look at the predicted ratings with this method, we can
see that they are often very close to the movie’s means. The main reason
is that the matrix is so sparse (approximately 99% of the entries are zero),
that for each column, almost every ratings correspond to the corresponding
movie average and the actual known ratings may be considered as noise by
the SVD algorithm.

4.2.2 Gradient descent

Principle

After having tried different techniques to handle missing values, we finally
re-considered the problem from the beginning. We have seen in section 1.2.1
page 10, that SVD is especially used to find the best rank-k approximation
matrix Xk to the original m × n matrix X, with respect to the Frobenius

4.2 Missing values 46

norm, i.e.
Xk = argmin

rk(Y)=k

∑

1≤i≤m
1≤j≤n

(Xi,j − Yi,j)
2

In the case of Collaborative Filtering, we would like to only take into account
the known entries and ignore the unknown error on the 99% empty slots.
Ideally, the problem we would like to solve is rather

X̂k = argmin
rk(Y)=k

∑

1≤i≤m
1≤j≤n
Xi,j 6=0

(Xi,j − Yi,j)
2

This problem cannot be solved by the usual SVD procedure. We simply
propose to use a gradient descent algorithm to minimize the error on the
known entries. Let say we are looking for a rank-1 matrix X̂0 = u0v0T . In
the original SVD framework, u0 and v0 can be thought of as the first left
and right singular vectors, respectively. The only difference is that we do
not normalize these vectors, so we do not have any singular value. We will
refer to them as pseudo-singular vectors in the following.

The error we want to minimize is

e0 =
∑

1≤i≤m
1≤j≤n
Xi,j 6=0

(
Xi,j − u0

i v
0
j

)2

To minimize this error function, one takes steps proportional to the negative
of the gradient. The derivatives of e0 are

∂e0

∂u0
i

= −2
∑

1≤j≤n
Xi,j 6=0

(
Xi,j − u0

i v
0
j

)
v0
j ∀ 1 ≤ i ≤ m

∂e0

∂v0
j

= −2
∑

1≤i≤m
Xi,j 6=0

(
Xi,j − u0

i v
0
j

)
u0

i ∀ 1 ≤ j ≤ n

Thus, the components of the pseudo-singular values are updated using the
formulas:

u0
i ← u0

i + λ
∑

1≤j≤n
Xi,j 6=0

(
Xi,j − u0

i v
0
j

)
v0
j ∀ 1 ≤ i ≤ m

v0
j ← v0

j + λ
∑

1≤i≤m
Xi,j 6=0

(
Xi,j − u0

i v
0
j

)
u0

i ∀ 1 ≤ j ≤ n

where λ is the learning rate.

4.2 Missing values 47

We repeat this process for each new pair of pseudo-singular vectors. Once
we have computed u0 and v0, we can repeat the process with the leftovers
X − u0v0T to get a second pair of vectors, and so on, such that the target
matrix is approximated by X ≈ u0v0T + u1v1T + . . . ukvkT . This is clearly
very similar to the usual SVD, the only difference being that we only take
the known entries into account. If the original matrix X was full, it’s worth
noting that we would have computed exactly the SVD1.

Hence, once p − 1 pairs of pseudo-singular vector have been computed,
the error measure used to compute the pth one is:

ep =
∑

1≤i≤m
1≤j≤n
Xi,j 6=0

(
Xi,j −

p−1∑

k=1

ũk
i ṽ

k
j − up

i v
p
j

)2

where ũk denotes the estimation of uk that has been computed in a previous
step. The gradient and the updating steps are then straightforwardly derived
from this formula.

Gradient Descent

Standard Batch Gradient Descent Given these formulas, we now just
have to run a standard gradient algorithm. To perform one iteration of
the gradient descent algorithm, one needs to compute all the derivatives
of the error function, which form the full gradient. Then, we can update
the pseudo-singular vectors. Therefore, standard gradient descent requires
one sweep through the whole training set (i.e., about 100 millions ratings),
before the components of the pseudo-singular vectors can be changed.

The properties of this optimization algorithm are well-known: When the
learning rate λ is small enough, the algorithm converges towards the global
minimum of the error function (because this function is convex). In practice,
we did not manage to get any interesting result with this method, because
the convergence speed is much too slow. We tried to vary the training rate
λ and the way we initialize a new pair of pseudo-singular vectors but it was
not sufficient.

Stochastic Gradient Descent The Stochastic Gradient Descent is usu-
ally a good alternative to the standard gradient descent for Machine Learn-
ing applications when data sets are particularly large (See for example [3]).
The idea is to update the model parameters after each training example.
Thus, we still loop over the 100 millions ratings of the dataset, but instead
of computing the gradient by taking all of them into account, we update some
parameters after each training example. More precisely, when we consider

1The singular values could be trivially extracted from the vectors.

4.2 Missing values 48

the rating given by user i to movie j, we directly update the ith component
of the left pseudo-singular vector and the jth component of the right one,
by using the simplified formulas:

u0
i
′ ← u0

i + λ
(
Xi,j − u0

i v
0
j

)
v0
j

v0
j ← v0

j + λ
(
Xi,j − u0

i v
0
j

)
u0

i

u0
i ← u0

i
′

The online gradient descent simplification relies on the hope that the random
noise introduced by this procedure won’t perturbate the average behavior
of the algorithm.

Parallel implementation We have tried to parallelize the computation
of the stochastic gradient descent procedure. As for the standard SVD
algorithm (see section 2.5.2, page 26), we distribute the original data matrix
over N machines, each of them being responsible of about 480,000

N rows. For
example, for N = 4:

1

2

3

4

Thus, each machine only considers the ratings that have been given by
users that correspond to its associated rows. Let’s assume that the first
machine processes a rating ri,k given by user i to movie k. This machine
will modify the ith component of the left pseudo-singular vector and the jth
component of the right one. However, each machine stores its own version of
the current right pseudo-singular vector. If later a different machine has to
process a rating rj,k given by user j to the same movie k, this machine should
know how the kth component of the right pseudo-singular vector has been
updated by the first machine previously. This implies each machine having
to communicate to all the other ones to tell them how they did modify the
right pseudo-singular vector at each step. Furthermore, there could be a
conflict if 2 machines have to process a rating of the same movie at the
same time.

To handle this difficulty, we also divide the columns into N groups.
During a first stage, each machine only considers the ratings that concern a

4.2 Missing values 49

certain part of the movies, according to this scheme:

1

2

3

4

Thus, we are sure that a conflict can not happen, and the machines do not
have to communicate. Once all the movies that correspond to this splitting
have been handled, the machines have to communicate to share their results.
Then, the considered movies by each machine shift according to the following
figure:

1

2

3

4

This process continues until each machine has considered all the movies, i.e.,
after N stages. Hence, the machines have to communicate only N times,
instead of after each considered rating.

Despite this technique to parallelize the computation, the communica-
tion time between the machines remains too long for this rating dataset. It
is faster to run the stochastic gradient descent on a single machine. Never-
theless, this parallelization strategy can be interesting for bigger datasets.

Experimental results

On a single machine, one training pass through the entire data set of about
100 millions ratings takes about 2 seconds. We have tried different stopping
criteria for the gradient descent, but simply doing a fixed number of itera-
tions over the whole data set was satisfying. We also empirically determined
that computing around 150 pairs of pseudo-singular vectors gives the best
results on the testing data set. Eventually, it takes about 5 hours to train
the system (i.e., to estimate 150 pseudo-singular vector pairs).

With this method, we achieved an RMSE of about 0.91, which is much
better than the performance of a standard SVD algorithm (1.18). It is even
better than the score obtained by the algorithm currently used by Netflix
(0.95).

4.3 Other approaches 50

4.3 Other approaches

4.3.1 Using a movie relatedness matrix

Integrating data attributes is another important issue of Recommender Sys-
tem algorithms. The goal is to use attributes that characterize the users or
the items in order to improve further the estimation results. So far, we al-
ways assumed that nothing is known about the users and the movies, apart
from the ratings expressed so far. It could be useful to take advantage of
other information, like the gender or the age of the users. Such a framework
has been studied in different papers, like [1].

For the application of the user-movie database, Netflix also provide movie
titles. We use the Internet Movie Database (IMDb) — which is an online
database of information about movies and actors — in order to retrieve
the genres used by the website to categorize movies. Indeed, movies can
easily be described with certain umbrella terms, such as Western, dramas or
comedies. We form an n×p binary matrix, where n = 17, 770 is the number
of movies in the database, and p = 25 is the number of different genres. As
certain genres are closely related (like Comedy and Family, or Crime and
Film-Noir), we perform SVD on this matrix, and then use the similarity
measures that we have introduced in section 3.5 page 35, in order to build
an n× n movie relatedness matrix M , where Mi,j is a normalized measure
of the similarity between movies i and j.

This similarity matrix is a prior knowledge that we use as a regularization
term. The components of the right pseudo-singular vectors that correspond
to movies that are closely related in terms of genres, are encouraged to be
close. The benefit of adding such a regularization term is that we may avoid
overfitting the training data.

Hence, once p− 1 pairs of pseudo-singular vectors have been computed,
the error measure used to compute the pth one is now:

ep =
∑

1≤i≤m
1≤j≤n
Xi,j 6=0

(
Xi,j −

p−1∑

k=1

ũk
i ṽ

k
j − up

i v
p
j

)2

+ α

n∑

i,j=1

(
vp
i − vp

j

)2
Mi,j

The experimental results of this approach are not very convincing. The
RMSE computed on the testing data is slightly better than before but the
difference is not significant. Our assumption is that genres are not suffi-
ciently informative attributes. On average, we already know about 5, 500
ratings per movie and this information is certainly much more explicative
than genres.

4.3 Other approaches 51

4.3.2 Taking user profiles into account

The users have different rating habits. Some users tend to always rate
movies with 3s, while other users only give 1s and 5s. Each user can be
charasterized by its ratings distribution. We have tried to take advantage
of this information in different ways:

• Once we have estimated ratings with the pseudo-SVD algorithm de-
scribed above, we tried to adjust the ratings distribution of each user
to the one we have by considering only the known ratings. This can
be done easily by using standard techniques that are for example used
to fit image histograms to given distributions.

• We also tried to use a prior for the ratings. We can consider the
known rating distribution of each user as a multinomial distribution
whose parameters are the number of ratings given by the user and the
frequency of each rating (proportion of 1s, of 2s, ..., of 5s). While
estimating a new rating, we simply use this information as a prior,
by using the Dirichlet distribution, which is the conjugate prior of the
multinomial distribution in Bayesian statistics.

• Of course, we always clip the prediction to the range 1-5. This can be
thought of as applying the function of Figure 4.1 to the estimations
computed by the gradient descent procedure.

Figure 4.1: The estimated ratings are clipped to the range 1-5.

As we already corrupted the matrix analogy with our pseudo-SVD
approach, we are not really restricted to linear model anymore. Thus,
we tried to use different functions to alter the estimations, as shown
in Figure 4.2. We fit a piecewise linear function that aims to take user
rating habits into account. Thus, the left graph is adapted to a user

4.3 Other approaches 52

who gives low ratings, while the right function corresponds to a user
who always give 1 or 5. Of course, this requires modifying the learning
rule slightly to include the slopes of these functions.

Figure 4.2: Functions used to take user rating profiles into account during
the learning stage.

Unfortunately, none of these methods turned out to be really effective.
They only lead to a slight improve of the RMSE computed on the testing
dataset. Several reasons may explain these desappointing results. First,
SVD should already take into account the fact that some users tend to give
high ratings while other ones are choosier. A row of the left singular vector
matrix corresponds to a single user and it may contain higher values if this
user is easy to please and lower ones if the user is pickier.

Furthermore, it is not obvious that the distribution of the estimated
ratings has to be adjusted to the distribution of the known ratings. Users
tend to see (and to rate) movies that conform to their tastes. Thus, we can
expect the average rating of unrated movies to be lower than the average
of the known ratings. Secondly, even if a user always rate movies with the
worst rate (1) or the best rate (5), it does not mean that we should always
predict new ratings to be 1 or 5. For example, always predicting 3 for new
movies may lead on average to a better RMSE than predicting only 1 or 5
and doing many mistakes.

Conclusion

As explained in the beginning of this report, we could not address every
parts of the work I did during the internship in this document, because of
confidentiality issues. However, it describes several methods we have tried
to address a given mathematical problem (computing the Singular Value
Decomposition of a large sparse matrix), from purely linear algebra meth-
ods, to machine learning oriented techniques like the Generalized Hebbian
Algorithm.

While this report mainly focuses on the theoretical issues, I spent a
significant part of my work time to adapt these methods to the Google en-
vironment, to make them work in parallel and with the Google specific data
formats. This work was also very interesting and I think that it will help
me a lot in the future. I also learned to produce quality code that is shared
and can be re-used, maintained and extended easily by other engineers.

Once we were able to compute the SVD and met the requirements de-
fined in the beginning of the internship, we could try different applications
that were useful for the team I was working with. Even if I am not allowed
to explain how my code is used by Google employees, I think that this re-
port gives a good overview of two important applications of the SVD in text
processing and data mining: Latent Semantic Analysis and Collaborative
Filtering.

Furthermore, I think that it was also very useful to discuss with my two
supervisors about machine learning techniques and diverse applications of
my work. I learned a lot only by exchanging points of view, and even by
just listening to all their ideas. Machine Learning at Google is fairly specific,
especially because of the huge amount of data that engineers have to deal
with, and this internship helped me to have a new perspective.

Bibliography

[1] Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-
Philippe Vert. Low-rank matrix factorization with attributes. Technical
report N-24/06/MM, École des Mines de Paris, 2006.

[2] James Bennett and Stan Lanning. The netflix prize. Proceedings of
KDD Cup and Workshop, 2007.

[3] Léon Bottou. Stochastic learning. In Advanced Lectures on Machine
Learning, number LNAI 3176 in Lecture Notes in Artificial Intelligence,
pages 146–168. Springer Verlag, Berlin, 2004.

[4] Erica Chisholm and T. G. Kolga. New Term Weighting Formulas for
the Vector Space Method in Information Retrieval. Technical report
ORNL/TM-13756, Computer Science and Mathematics Division, Oak
Ridge National Laboratory, 1999.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In OSDI’04: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation, pages
137–150. Google, Inc., 2004.

[6] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent se-
mantic analysis. Journal of the American Society of Information Sci-
ence, 41(6):391–407, 1990.

[7] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast
low-rank matrix approximation. In RANDOM, pages 292–303, 2006.

[8] Inderjit S. Dhillon and Beresford N. Parlett. Orthogonal eigenvectors
and relative gaps. SIAM J. Matrix Anal. Appl., 25(3):858–899, 2003.

[9] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte
carlo algorithms for matrices ii: Computing a low-rank approximation
to a matrix. SIAM J. Comput., 36(1):158–183, 2006.

BIBLIOGRAPHY 55

[10] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Us-
ing collaborative filtering to weave an information tapestry. Communi-
cations of the ACM, 35(12):61–70, 1992.

[11] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

[12] Genevieve Gorrell. Generalized hebbian algorithm for dimensionality
reduction in natural language processing. 2006.

[13] Genevieve Gorrell. Generalized hebbian algorithm for incremental sin-
gular value decomposition in natural language processing. In EACL,
2006.

[14] W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a
hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[15] Alex Kleeman, Nick Hendersen, and Sylvie Denuit. Matrix factorization
for collaborative prediction. ICME, 2006.

[16] E. Oja and J. Karhunen. On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix. 106:69–84,
1985.

[17] G. Salton, A. Wong, and C. S. Yang. A vector space model for auto-
matic indexing. Communications of the ACM, 18(11):613–620, 1975.

[18] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing and Management,
24(5):513–523, 1988.

[19] Terence D. Sanger. Optimal unsupervised learning in a single-layer lin-
ear feedforward neural network. Neural Networks, 2(6):459–473, 1989.

[20] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of di-
mensionality reduction in recommender systems – a case study. ACM
WebKDD Workshop, 2000.

Index

ARPACK, 25

Bag-of-Words, 31
Batch Gradient Descent, 47

Collaborative Filtering, 42
Confusion Matrix, 38

Deflation Method, 18
Dirichlet distribution, 51
Document-term matrix, 11, 30

Eigenvalue Decomposition, 10

F-measure, 39
Frobenius norm, 10

Generalized Hebbian Algorithm, 21
Gram-Schmidt Process, 19

Hebb rule, 22
Householder reflection, 13

Information retrieval, 29

Johnson-Lindenstrauss Lemma, 24

Lanczos algorithm, 25
LAPACK, 13
Latent Semantic Analysis, 29

MapReduce, 26
Matrix bidiagonalization, 14
Message Passing Interface, 26
Multinomial distribution, 51

Netflix, 42

Oja Model, 21

Power Method, 17
Precision, 38
Principal Component Analysis, 21

QR decomposition, 13
Query Expansion, 38

Recall, 38
Recommender System, 42

Singular Value Decomposition, 9
Stanger Model, 22
Stochastic Gradient Descent, 47
Stop-words, 34

Tf-idf scheme, 34
Truncated SVD, 10

Vector Space Model, 30

