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Abstract

This paper presents a method for real-time wide-baseliatife matching.
The approach is based on the work of Lepetit and colleagyewf@re ran-
domized decision trees are trained to establish corregmmed between de-
tected features in a training image, and those in input feanféough ex-
tremely promising, their actual results can vary dependimghe viewpoint
and illumination conditions. We combine two approachedlaviate its lim-
itations. The first aims to update the trees at run-time, taapthem to the
actual viewing conditions. The second consists in spgt@ilitributing the
trees, so that each of them models a certain viewing volume mr@cisely.
The result is a more stable matching method that signifigaxtends de-
tectable range and is much more robust to illumination chansuch as cast
shadows or reflections.

1 Introduction

We address the real-time feature matching problem in thpgipaVe are concerned with
matching features observed from two views separated by @ badeline. This problem
remains one of the most fundamental issues in computemvisigearch. A solution to it
has many applications, such as object detection, recognitiacking and 3D reconstruc-
tion. The problem is difficult because unlike short basel@ature tracking methods [12],
a crucial source of information, spatial-temporal adjageof feature points, is absent.
Furthermore, a feature appearance can be distorted bydamyeetric transformations or
significant illumination changes.

The community has observed some exciting breakthroughipast several years.
For example, SIFT feature detector [11] and affine invarfieature detectors [2, 13] have
seen maturity in real applications. Recently, significamigpess was made by Lepetit
et. al. [9]. They treat the issue of feature matching as asifleation problem by using
randomized classification trees [1]. Their system showistie& (25 frames per second)
feature matching very robustly.

This paper aims to alleviate some of the limitations of time@thod in order to make
it even more widely applicable. As noted in their paper, ajectbcan be reliably de-
tected only within a certain range of viewpoints and illuation conditions, which are

*The work was done while Aétien Boffy was working for Siemens.



determined by the training images that are rendered fromdem@®nce trained, the per-
formance can no longer be improved. In addition, during thage rendering process,
any artifacts introduced, such as unrealistic occlusiahsradow/shading, may have an
impact and cannot be corrected. Another limiting factor tedit method is the trade-
off between feature matching accuracy and the volume cdJayehe trees, when each
trained tree attempts to cover all viewpoints.

In observation of these problems, we propose several tgabsito significantly im-
prove the performance of the classification trees at rue-ti@ur insights are summarized
as follows:

e Live feedback from an input video, such as true matches(silior false matches
(outliers), can be used to improve the trees. This effelgtitemoves artifacts in-
troduced in the training stage and can significantly inczéhe detectable range.
Note that detection of inliers/outliers can be achievepehdently by geometric
methods, and will be discussed later on.

e Trees can be spatially distributed, meaning that each of thely covers a prede-
fined viewing volume. For tracking, temporal coherence afgsocan help adapt a
specific subset of trees, while locally weighted sum of miatgiprobabilities can
outperform matching accuracy of the original method.

We would like to point out that our method is suitable for botiject detection and
tracking. When there is no information regarding the curoambera position, all trained
trees are used to match features. Once the object is detduterthmera pose estimate is
used to select the subset of trees, which will be used for éixeframe. As a result, the
computational cost can be reduced during tracking. Smoatiddvers are achieved by
allowing overlap among viewing volumes of different trees.

The remainder of this paper is structured as follows. Inise@, we review previous
work on the topic and we describe more precisely the work qfettie et al. Section 3
focuses on the improvement of the classification trees dutie real-time stage, while
Section 4 explains the spatially distributed trees. Sadipresents results of object de-
tection and tracking in comparison with the work of Lepetiak, and Section 6 presents
conclusions.

2 Related Work

2.1 Previous Work on Feature Matching

Short baseline feature tracking [12] was among the firstesssfal methods in computer
vision. Attempts have been made to match features sepdatediide baseline. Among
the most successful ones are the SIFT feature detector fitiLafine invariant feature
detectors [2, 13]. Authors for both the SIFT feature detegial some affine invariant fea-
ture detectors found their inspirations from earlier warls€ale space analysis [10] and
studies of biological visual systems, especially the aestieround structures of mam-
malian ganglion cells [8]. Although powerful, these feataetectors are usually com-
putationally costly on sequential computers, which makestdifficult to be applied in
resource-demanding applications.



2.2 The Original Method of Lepetit et. al.

Lepetit et al. [9] proposed a wide-baseline feature mateihiethod that has real-time
performance. They formulate matching as a classificatioblpm. Each feature of the
object selected during the training phase is considerectksa corresponding to the set
of all its possible appearances. The goal of feature magckiachieved by attributing
each newly detected feature in a test image to one of thessesla As the features are
classified by binary or ternary decision trees and decisioasnade by very simple tests
at each node, the feature matching process is extremely fast

Given either a single image of an object or a fully textured3&del, a set of training
images are synthesized by warping the reference model tood giewpoints defined by
random samples of transformation parameters. Since timngamages are synthesized,
the true correspondences are known. Consequently, thetaledéy of each feature in the
synthesized images can be studied. The most stable featuties object, i.e., the ones
that can be detected repeatably despite noise, are selected

A random set of labeled features are used to build the decisé@s. At each inter-
nal node, a set of tests involving intensity comparison ketwtwo pixels are randomly
drawn. The test that results in maximum information gainhigsen as the splitting cri-
terion for the node. The process is repeated until the nuwifteaining examples left is
small, or when a given depth is reached. At each leaf nodesatmple frequency of each
feature class is stored. This is an estimate of the conditidistribution over the classes
given that a feature reaches that leaf. To reduce variarfdég conditional distribution
estimates, multiple randomized trees are trained indegyetyd During the testing phase,
a test feature is dropped down each tree independently. vEltage distribution amongst
those stored in all reached leaf nodes is used to classifynphg feature, utilizing maxi-
mum a posteriori estimation.

3 Adaptive Classification Trees
3.1 The Adaptive Method

The principle is to extend the training phase by analyzingchiag performance on live
input videos. We propose to update the trees with the fraroemlly captured by the
camera. There are two types of live updates.

First, for each frame, after the feature matching step,paddent geometric methods,
such as the 3-point pose estimation algorithm [6] (with kn®D coordinates of the
feature points selected during the training phase) or thddmental matrix estimation
algorithm [7] (with unknown 3D), are coupled with RANSAC [8} determine if each
declared correspondence is a good match (inlier) or a neig@litlier). If the projection
(projected point or epipolar line) of a training feature &/bnd a given distance from the
declared “correspondence”, an outlier is detected. Ofiservan inlier is found. Inlier
matches are used to reinforce the distributions on the eghletaf nodes by increasing the
probabilities of the feature classes corresponding to ffsem Figure 1 for an illustration).

Second, in the case of known 3D coordinates of the selecadirig features, we
can improve the trees further by recovering the lost matc@ese we know the pose of
the camera, we can project onto the frame the training featwhich were not correctly
matched with any detected feature. If the distance betwaempitojection of a training
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Figure 1:Update of the probability distribution function of a ledfhe conditional prob-
ability is kept by sample frequencies, i.& ,the number of features that reach the leaf,
andK; the number of samples belonging to clasgesulting in a probability estimate of
Ki/K. During the on-line training, we just continue in the same ¥eeincrease th& and

K; values.

featurep and the nearest detected featpfés smaller than a given threshold, it means
that the classification of this featup has failed. We then identify the leaf nodes tpat
reached, and increase the probabilities correspondingetéeature class g, so that it
becomes more likely that the classification of this featuilesmcceed in the future. A
similar approach can be applied to the fundamental matsedaethod.

3.2 How Does the Proposed Method Work?

In the following, we explain how the proposed method circentg some difficulties of
the original work.

Geometric modeling imperfections can be compensated fapbgting the trees with
the images actually captured by the camera, instead of @nhgsynthesized views. For
local 3D structures, e.g., 3D corners, any 2D transformasionsufficient to capture their
appearance changes. If a set of examples with incorrechagpees are synthesized and
used to train the trees, the performance will be poor at thtinge phase. However, even
if such a featurg is matched with a wrong feature, as long as RANSAC is robustigin
to estimate the camera pose despite these outlier matdies (foe case by definition of
RANSAC), the true match/’ can be identified and the corresponding probability tabfe ca
be updated. If enough observations of this type are madeill eventually be matched
with p despite the initial synthetic errors.

This brings up another advantage of the proposed methodn fevecomplex 3D
structures, our method allows us to use only a single imagebparse set of 3D points
corresponding to the selected features, as inputs. 2Dftranations (homography or
affine) are used to synthesize new views. Imperfectionsasdlplanar transformations
can be amended by live adaptive training. We successfuligected our experiments
following this approach. As a result, we avoid the requiratfer dense full models of
3D objects. Furthermore, the requirement for 3D coordmatdhe selected features can
also be relaxed if 1) the planar transformations result inificient number of correct
matches from which the 3D coordinates of most features cagstimated using struc-
ture from motion methods [7] or 2) epipolar geometry alonsufiiciently effective for
discriminating inliers/outliers.



Similarly, errors introduced by other modeling imperfeas, such as appearance
modeling inaccuracy (limited resolution of the input mqdsHadow, shading or reflec-
tion), can be compensated for in the same way. Given enougtatibn, the trees will
eventually model more precisely the actual appearances objgct under different geo-
metric and photometric conditions. As a result, we are abkxtend the working ranges
of viewpoints and illumination conditions tremendously.

3.3 Discussion

A necessary condition under which the adaptive method inge@erformance is that
pose estimation is successful for the frame under condideraThis can be achieved
by starting the live training only when the object is detdaidgth confidence, e.g., with
enough inlier matches.

Live update can also fail on rare occasions. For example) iiramodeled feature
g blocks the true featurp and the camera stays in the same place for a while, feature
g will tend to be considered as the “correspondencep.ofHowever, if the camera is
continuously moving, such an erroneous update usually doebkappen repeatedly for
the same class in the same leaf node. Furthermore, if thécatere is exposed later, the
tree can adapt back to the real correspondence. As a reseltoad requirement for the
method to work is that such accidental views happen rarelys iB always the case in
our study. In fact, research has been done regarding theigetev assumption and the
rareness of accidental views [4].

Another concern with the proposed method is overfitting. dfiypdate the trees while
the camera stays in the same region for a long time, the toegd be excessively adapted
to this position and the performance could drop if the cangeiiekly moves to another
place. However, if we update only a local set of trees instéadl the trees, as we discuss
in the next section, this problem can be avoided.

Notice that we only update the leaf nodes of the trees whiteiihg the internal nodes
and the structure of the trees intact. It has been observédepgtit et al. [9] that they
could even use, with good performance, the same tree steuictua different object, by
only updating the leaf nodes. This implies that the leaf saate the most discriminative
part in separating one feature from another. Our experisnaonifirm their observation.

4 Spatially Distributed Trees

4.1 Overview

It has been observed that the appearance of objects stagexapately the same in a
certain viewing volume, and changes suddenly at some singpaundaries. This has
been the subject of aspect graph research [5]. Similaréy,afhpearance of a selected
feature on an object stays similar in a local viewing volutogt, it may be drastically
different from some distant locations. For each tree, thgirmal work in [9] attempts
to capture global feature appearances. Inevitably, theeetrade-off between feature
matching performance and the volume covered by the trees.

We propose to specialize the trees, so that each of them madgdecific viewing
volume more accurately. These regions have overlaps, savthsatill use multiple trees.
As the within-class variation in each tree is lower, we camfesver trees that are smaller



to achieve the same feature matching accuracy. Thus, theuwational time can be
reduced. This is especially true in the “tracking” phasegrehthe subset of trees can
be identified by the position of the camera in the previoum&a For the “detection”
task, where the camera position is not known, we propose dcalighe trees and the
computational time depends on the total number of trees.

Used in combination with adaptive trees, this approachnallas to only update a
local set of trees. Thus, we avoid overfitting the trees inabgll scale. They are biased
toward classifying a local region more precisely, but teatésirable in this setting.

Another advantage of this method concerns the stable &eaglection process. In
the initial method of Lepetit et al., the selected featurestiose that are globally stable,
which may be rare and volatile. Spatially distributed treesble us to use different
features according to the position of the camera. As a mattfarct, some features can
be very stable in a limited region but not detectable elsetiEhey could be adopted for
the local trees, but would certainly be ignored in the ihgigorithm proposed by Lepetit
etal.

4.2 Implementation Details

A regular grid of positions (uniform in angular and loganitic radius directions) is de-
fined surrounding the object of interest (see Figure 2). Atjpos combined with a range
(radius), defines a spherical viewing volume. Neighboriplgeses have a large amount
of overlap. Each position is assigned to a classificatios, tnhich is designed to detect
and track the object if the camera position is located ingg&epherical coverage region.

Training images of each tree are rendered by randomly paositj the camera inside
the tree’s coverage region. Note that to be able to synthesizimage from a specific
point of view, we assume that a textured 3D model of the oligeavtailable. Thus, while
a single image of the object is required to use adaptive ffigles a sparse set of 3D
points if needed), a textured 3D model is necessary to takadwvantage of spatially
located trees.

At run-time, we select the trees that cover the camera pasiti the previous frame.
They are used for feature matching and are updated, if negess To ensure smooth
transitions, we use weighted average of conditional pritibakables to classify each
input feature, where the weight is a monotonically decrepsiinction of the distance
from the camera position to the center of each sphere.

If the object is not detected in the previous frame, all tleesrare used for feature
matching. Empirically, we observe that the object detectierformance does not suffer
compared to the original method [9], but it is a bit slower doénvolvement of more
features and more trees. Another approach would be to keep sees defined without
specific location like in the method of Lepetit et. al. and tssm in such cases. Note that
we select a local set of stable features for each spatialyiblited tree. If the number of
features is on averade, and if we usel trees, the total number of features is betwhen
andT - N (empirically it is about 8| due to shared stable features).

*We assume that camera movement between frames is small comparedtwéhage region of each tree.
Consequently, the two camera centers corresponding to thedmsecutive frames are covered by the same set
of trees.
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Figure 2:Spatial distribution of the classification trees and theinges.The figure is for
illustration purpose only. The actual distribution inve$v3D spheres and larger overlaps.

5 Experimental Results

Improvements of our method over the original method are destnated in this section.
The videos are acquired live using a low-end web cam (Unibfaie-I). Initial trees are
built from a model of the object, i.e., a single image of anegbplus a sparse set of 3D
points corresponding to the selected features for the agapee technique, or a textured
3D model for the spatially distributed trees. Note agairt tha requirements for the
sparse set of 3D points can be relaxed if a robust structore fnotion method [14] is
integrated.

c. 15th frame - 89 inliers . 50th frame - 124 inliers o

Figure 3:Evolution of the adaptive tree$he inlier matches are drawn using green lines,
while the outliers are in red. Note that the number of inli@tohes is always increasing.

We first demonstrate the power of the adaptive method withsimg the spatial dis-
tribution technique. After initial construction of the &® we can adapt them both offline
using video sequences acquired under different condijtamms online using live video.

Figure 3 shows the effectiveness of the adaptive method area gequence, where a
book cover can hardly be detected by the original methodhdra) from an oblique view-
ing angle, but is eventually detected with a significantéase in the number of matched
features. Note that during the test, the camera is movingansof being stationary.
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Figure 4: (a)lnfluence of adaptive treesWe used a single video sequence for online
adaptive training. (bAdaptation to sudden illumination changegluctuation of the
percentage of inliers, when a sudden illumination changpéias at frames 155 and 330.

The following experiments are conducted with video seqasmd a toy car against a
cluttered background. Figure 4(a) shows the percentagdief matches as a function of
the distance between the camera and the object, assunsratidtzince is 1 for the training
image. The performances are significantly improved whewmehohages are used to adapt
the trees. In this experiment, we used a sequence of 3504rfmmeffline adaptation, and
a sequence of 440 frames for performance testing and ontiaptation. A forest of
20 trees is used and 200 features are selected. Notice tiiatrpance improvement is
significant, even though we only use a short sequence foneffidaptive training and
turn off online adaptation. This clearly shows the strergftthe adaptive method.

Figure 4(b) shows performance fluctuation with strong illaation changes. For the
experiment, we switch on and off a strong light to cause a#itur and reflection in the
input frames. Both the original and the adaptive methodsatigeably affected when
the light is turned on. However, by updating the trees wittdfsacks from the actual
images, they adapt themselves quickly. Furthermore, wheright is suddenly turned
off, the matching performance does not suffer, meaninglhigatrees are not overfitted for
a particular light. Without adaptation, the matching perfance remains very poor while
the light is on. We observed similar performance for otheesyof illumination changes,
such as cast shadow or shading. Figure 5 gives a specific é&xamtpis test. We can find
many correspondences, even when the lighting conditiomsliastically different from
the one used for the training image. The object cannot beetat all in this image
without an adaptation procedure starting from a detectaaiee.

Next, we show the performance improvement due to the spyadatributed trees.
For comparison purposes, we use the method of Lepetit e3]alb [construct trees with
different scale ranges, i.e., distane3,2.5] and[2.0,5.0]. For each range, a forest of
20 trees utilizing 200 stable features is constructed. ftossurprising to see that the
inlier percentage is high within the nominal range, whileliibps very quickly outside
(Figure 6). When the trees are stretched over the whole ri@§&.0], the performance
suffers globally.

Spatially distributed trees clearly alleviate this traifeand extend the detectable



Figure 5:Feature matching under extreme illumination conditioAbout 40% of the 200
selected features are well matched despite strong satuiatid reflection.
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Figure 6:Performance comparison: spatially distributed tre€patially distributed trees
increase both matching accuracy and coverage.

range without any drop of performance. 40 spatially distiel trees and a total of 250
features are used. However, only between 15 and 20 treesf(40} are used to estimate
the pose for each frame. We chose not to adapt the trees && &éxperiments.

The inlier percentage is computed by only taking into actdha set of features
contained in the tree closest to the camera position. Nateithrobust methods such
as RANSAC, as long as the number of correspondences is suffithe percentage of
inliers is far more important than the total number of irdiedn our case, we are able
to find a subset of features (usually 80 features) contaiaitegge percentage of inliers,
which is better for pose estimation than using all 200 fesgum the original method but
with a small percentage of correct correspondences. Irsthise, we consider it a fair
comparison. Also notice that we use a local cluster of trastead of the closest tree,
for less variance in the probability tables computationy amooth transitions among
coverage regions.



6 Conclusion and Perspectives

We proposed two improvements to the original randomizeslferature matching method.

By analyzing the feedback from the input video, we acquirditaahal knowledge
about the appearance of the object under the actual viewanditions. This is used to
update the classification trees at run-time. Thus, we aretalilandle more complex 3D
objects, shadows, specular materials and extreme viewigig s

Using spatially distributed trees designed to detect aaktthe object in predefined
viewing volumes makes the method more robust to viewpoiahgks, and makes feature
tracking faster.
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