
Real-Time Feature Matching using Adaptive
and Spatially Distributed Classification Trees
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Abstract

This paper presents a method for real-time wide-baseline feature matching.
The approach is based on the work of Lepetit and colleagues [9], where ran-
domized decision trees are trained to establish correspondences between de-
tected features in a training image, and those in input frames. Though ex-
tremely promising, their actual results can vary dependingon the viewpoint
and illumination conditions. We combine two approaches to alleviate its lim-
itations. The first aims to update the trees at run-time, adapting them to the
actual viewing conditions. The second consists in spatially distributing the
trees, so that each of them models a certain viewing volume more precisely.
The result is a more stable matching method that significantly extends de-
tectable range and is much more robust to illumination changes, such as cast
shadows or reflections.

1 Introduction

We address the real-time feature matching problem in this paper. We are concerned with
matching features observed from two views separated by a wide baseline. This problem
remains one of the most fundamental issues in computer vision research. A solution to it
has many applications, such as object detection, recognition, tracking and 3D reconstruc-
tion. The problem is difficult because unlike short baselinefeature tracking methods [12],
a crucial source of information, spatial-temporal adjacency of feature points, is absent.
Furthermore, a feature appearance can be distorted by largegeometric transformations or
significant illumination changes.

The community has observed some exciting breakthroughs in the past several years.
For example, SIFT feature detector [11] and affine invariantfeature detectors [2, 13] have
seen maturity in real applications. Recently, significant progress was made by Lepetit
et. al. [9]. They treat the issue of feature matching as a classification problem by using
randomized classification trees [1]. Their system shows real-time (25 frames per second)
feature matching very robustly.

This paper aims to alleviate some of the limitations of theirmethod in order to make
it even more widely applicable. As noted in their paper, an object can be reliably de-
tected only within a certain range of viewpoints and illumination conditions, which are
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determined by the training images that are rendered from a model. Once trained, the per-
formance can no longer be improved. In addition, during the image rendering process,
any artifacts introduced, such as unrealistic occlusion and shadow/shading, may have an
impact and cannot be corrected. Another limiting factor of their method is the trade-
off between feature matching accuracy and the volume covered by the trees, when each
trained tree attempts to cover all viewpoints.

In observation of these problems, we propose several techniques to significantly im-
prove the performance of the classification trees at run-time. Our insights are summarized
as follows:

• Live feedback from an input video, such as true matches (inliers) or false matches
(outliers), can be used to improve the trees. This effectively removes artifacts in-
troduced in the training stage and can significantly increase the detectable range.
Note that detection of inliers/outliers can be achieved independently by geometric
methods, and will be discussed later on.

• Trees can be spatially distributed, meaning that each of them only covers a prede-
fined viewing volume. For tracking, temporal coherence of poses can help adapt a
specific subset of trees, while locally weighted sum of matching probabilities can
outperform matching accuracy of the original method.

We would like to point out that our method is suitable for bothobject detection and
tracking. When there is no information regarding the currentcamera position, all trained
trees are used to match features. Once the object is detected, the camera pose estimate is
used to select the subset of trees, which will be used for the next frame. As a result, the
computational cost can be reduced during tracking. Smooth handovers are achieved by
allowing overlap among viewing volumes of different trees.

The remainder of this paper is structured as follows. In section 2, we review previous
work on the topic and we describe more precisely the work of Lepetit et al. Section 3
focuses on the improvement of the classification trees during the real-time stage, while
Section 4 explains the spatially distributed trees. Section 5 presents results of object de-
tection and tracking in comparison with the work of Lepetit et al., and Section 6 presents
conclusions.

2 Related Work

2.1 Previous Work on Feature Matching

Short baseline feature tracking [12] was among the first successful methods in computer
vision. Attempts have been made to match features separatedby a wide baseline. Among
the most successful ones are the SIFT feature detector [11] and affine invariant feature
detectors [2, 13]. Authors for both the SIFT feature detector and some affine invariant fea-
ture detectors found their inspirations from earlier work in scale space analysis [10] and
studies of biological visual systems, especially the center-surround structures of mam-
malian ganglion cells [8]. Although powerful, these feature detectors are usually com-
putationally costly on sequential computers, which makes them difficult to be applied in
resource-demanding applications.



2.2 The Original Method of Lepetit et. al.

Lepetit et al. [9] proposed a wide-baseline feature matching method that has real-time
performance. They formulate matching as a classification problem. Each feature of the
object selected during the training phase is considered as aclass corresponding to the set
of all its possible appearances. The goal of feature matching is achieved by attributing
each newly detected feature in a test image to one of these classes. As the features are
classified by binary or ternary decision trees and decisionsare made by very simple tests
at each node, the feature matching process is extremely fast.

Given either a single image of an object or a fully textured 3Dmodel, a set of training
images are synthesized by warping the reference model to a set of viewpoints defined by
random samples of transformation parameters. Since the training images are synthesized,
the true correspondences are known. Consequently, the detectability of each feature in the
synthesized images can be studied. The most stable featuresof the object, i.e., the ones
that can be detected repeatably despite noise, are selected.

A random set of labeled features are used to build the decision trees. At each inter-
nal node, a set of tests involving intensity comparison between two pixels are randomly
drawn. The test that results in maximum information gain is chosen as the splitting cri-
terion for the node. The process is repeated until the numberof training examples left is
small, or when a given depth is reached. At each leaf node, thesample frequency of each
feature class is stored. This is an estimate of the conditional distribution over the classes
given that a feature reaches that leaf. To reduce variances of the conditional distribution
estimates, multiple randomized trees are trained independently. During the testing phase,
a test feature is dropped down each tree independently. The average distribution amongst
those stored in all reached leaf nodes is used to classify theinput feature, utilizing maxi-
mum a posteriori estimation.

3 Adaptive Classification Trees

3.1 The Adaptive Method

The principle is to extend the training phase by analyzing matching performance on live
input videos. We propose to update the trees with the frames actually captured by the
camera. There are two types of live updates.

First, for each frame, after the feature matching step, independent geometric methods,
such as the 3-point pose estimation algorithm [6] (with known 3D coordinates of the
feature points selected during the training phase) or the fundamental matrix estimation
algorithm [7] (with unknown 3D), are coupled with RANSAC [3]to determine if each
declared correspondence is a good match (inlier) or a mistake (outlier). If the projection
(projected point or epipolar line) of a training feature is beyond a given distance from the
declared “correspondence”, an outlier is detected. Otherwise, an inlier is found. Inlier
matches are used to reinforce the distributions on the reached leaf nodes by increasing the
probabilities of the feature classes corresponding to them(see Figure 1 for an illustration).

Second, in the case of known 3D coordinates of the selected training features, we
can improve the trees further by recovering the lost matches. Once we know the pose of
the camera, we can project onto the frame the training features which were not correctly
matched with any detected feature. If the distance between the projection of a training



Figure 1:Update of the probability distribution function of a leaf.The conditional prob-
ability is kept by sample frequencies, i.e.,K the number of features that reach the leaf,
andKi the number of samples belonging to classi, resulting in a probability estimate of
Ki/K. During the on-line training, we just continue in the same way to increase theK and
Ki values.

featurep and the nearest detected featurep′ is smaller than a given threshold, it means
that the classification of this featurep′ has failed. We then identify the leaf nodes thatp′

reached, and increase the probabilities corresponding to the feature class ofp, so that it
becomes more likely that the classification of this feature will succeed in the future. A
similar approach can be applied to the fundamental matrix based method.

3.2 How Does the Proposed Method Work?

In the following, we explain how the proposed method circumvents some difficulties of
the original work.

Geometric modeling imperfections can be compensated for byupdating the trees with
the images actually captured by the camera, instead of only using synthesized views. For
local 3D structures, e.g., 3D corners, any 2D transformation is insufficient to capture their
appearance changes. If a set of examples with incorrect appearances are synthesized and
used to train the trees, the performance will be poor at the testing phase. However, even
if such a featurep is matched with a wrong feature, as long as RANSAC is robust enough
to estimate the camera pose despite these outlier matches (often the case by definition of
RANSAC), the true matchp′ can be identified and the corresponding probability table can
be updated. If enough observations of this type are made,p′ will eventually be matched
with p despite the initial synthetic errors.

This brings up another advantage of the proposed method. Even for complex 3D
structures, our method allows us to use only a single image plus a sparse set of 3D points
corresponding to the selected features, as inputs. 2D transformations (homography or
affine) are used to synthesize new views. Imperfections in these planar transformations
can be amended by live adaptive training. We successfully conducted our experiments
following this approach. As a result, we avoid the requirement for dense full models of
3D objects. Furthermore, the requirement for 3D coordinates of the selected features can
also be relaxed if 1) the planar transformations result in a sufficient number of correct
matches from which the 3D coordinates of most features can beestimated using struc-
ture from motion methods [7] or 2) epipolar geometry alone issufficiently effective for
discriminating inliers/outliers.



Similarly, errors introduced by other modeling imperfections, such as appearance
modeling inaccuracy (limited resolution of the input model, shadow, shading or reflec-
tion), can be compensated for in the same way. Given enough adaptation, the trees will
eventually model more precisely the actual appearances of an object under different geo-
metric and photometric conditions. As a result, we are able to extend the working ranges
of viewpoints and illumination conditions tremendously.

3.3 Discussion

A necessary condition under which the adaptive method improves performance is that
pose estimation is successful for the frame under consideration. This can be achieved
by starting the live training only when the object is detected with confidence, e.g., with
enough inlier matches.

Live update can also fail on rare occasions. For example, if an un-modeled feature
q blocks the true featurep and the camera stays in the same place for a while, feature
q will tend to be considered as the “correspondence” ofp. However, if the camera is
continuously moving, such an erroneous update usually doesnot happen repeatedly for
the same class in the same leaf node. Furthermore, if the truefeature is exposed later, the
tree can adapt back to the real correspondence. As a result, asecond requirement for the
method to work is that such accidental views happen rarely. This is always the case in
our study. In fact, research has been done regarding the generic view assumption and the
rareness of accidental views [4].

Another concern with the proposed method is overfitting. If we update the trees while
the camera stays in the same region for a long time, the trees could be excessively adapted
to this position and the performance could drop if the cameraquickly moves to another
place. However, if we update only a local set of trees insteadof all the trees, as we discuss
in the next section, this problem can be avoided.

Notice that we only update the leaf nodes of the trees while leaving the internal nodes
and the structure of the trees intact. It has been observed byLepetit et al. [9] that they
could even use, with good performance, the same tree structure for a different object, by
only updating the leaf nodes. This implies that the leaf nodes are the most discriminative
part in separating one feature from another. Our experiments confirm their observation.

4 Spatially Distributed Trees

4.1 Overview

It has been observed that the appearance of objects stays approximately the same in a
certain viewing volume, and changes suddenly at some singular boundaries. This has
been the subject of aspect graph research [5]. Similarly, the appearance of a selected
feature on an object stays similar in a local viewing volume,but it may be drastically
different from some distant locations. For each tree, the original work in [9] attempts
to capture global feature appearances. Inevitably, there is a trade-off between feature
matching performance and the volume covered by the trees.

We propose to specialize the trees, so that each of them models a specific viewing
volume more accurately. These regions have overlaps, so that we still use multiple trees.
As the within-class variation in each tree is lower, we can use fewer trees that are smaller



to achieve the same feature matching accuracy. Thus, the computational time can be
reduced. This is especially true in the “tracking” phase, where the subset of trees can
be identified by the position of the camera in the previous frame. For the “detection”
task, where the camera position is not known, we propose to use all the trees and the
computational time depends on the total number of trees.

Used in combination with adaptive trees, this approach allows us to only update a
local set of trees. Thus, we avoid overfitting the trees in a global scale. They are biased
toward classifying a local region more precisely, but that is desirable in this setting.

Another advantage of this method concerns the stable feature selection process. In
the initial method of Lepetit et al., the selected features are those that are globally stable,
which may be rare and volatile. Spatially distributed treesenable us to use different
features according to the position of the camera. As a matterof fact, some features can
be very stable in a limited region but not detectable elsewhere. They could be adopted for
the local trees, but would certainly be ignored in the initial algorithm proposed by Lepetit
et al.

4.2 Implementation Details

A regular grid of positions (uniform in angular and logarithmic radius directions) is de-
fined surrounding the object of interest (see Figure 2). A position, combined with a range
(radius), defines a spherical viewing volume. Neighboring spheres have a large amount
of overlap. Each position is assigned to a classification tree, which is designed to detect
and track the object if the camera position is located insideits spherical coverage region.

Training images of each tree are rendered by randomly positioning the camera inside
the tree’s coverage region. Note that to be able to synthesize an image from a specific
point of view, we assume that a textured 3D model of the objectis available. Thus, while
a single image of the object is required to use adaptive trees(plus a sparse set of 3D
points if needed), a textured 3D model is necessary to take full advantage of spatially
located trees.

At run-time, we select the trees that cover the camera position in the previous frame.
They are used for feature matching and are updated, if necessary ∗. To ensure smooth
transitions, we use weighted average of conditional probability tables to classify each
input feature, where the weight is a monotonically decreasing function of the distance
from the camera position to the center of each sphere.

If the object is not detected in the previous frame, all the trees are used for feature
matching. Empirically, we observe that the object detection performance does not suffer
compared to the original method [9], but it is a bit slower dueto involvement of more
features and more trees. Another approach would be to keep some trees defined without
specific location like in the method of Lepetit et. al. and usethem in such cases. Note that
we select a local set of stable features for each spatially distributed tree. If the number of
features is on averageN, and if we useT trees, the total number of features is betweenN
andT ·N (empirically it is about 3N due to shared stable features).

∗We assume that camera movement between frames is small compared to the coverage region of each tree.
Consequently, the two camera centers corresponding to the two consecutive frames are covered by the same set
of trees.
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Figure 2:Spatial distribution of the classification trees and their ranges.The figure is for
illustration purpose only. The actual distribution involves 3D spheres and larger overlaps.

5 Experimental Results

Improvements of our method over the original method are demonstrated in this section.
The videos are acquired live using a low-end web cam (Unibrain Fire-I). Initial trees are
built from a model of the object, i.e., a single image of an object plus a sparse set of 3D
points corresponding to the selected features for the adaptive tree technique, or a textured
3D model for the spatially distributed trees. Note again that the requirements for the
sparse set of 3D points can be relaxed if a robust structure from motion method [14] is
integrated.

Figure 3:Evolution of the adaptive trees.The inlier matches are drawn using green lines,
while the outliers are in red. Note that the number of inlier matches is always increasing.

We first demonstrate the power of the adaptive method withoutusing the spatial dis-
tribution technique. After initial construction of the trees, we can adapt them both offline
using video sequences acquired under different conditions, and online using live video.

Figure 3 shows the effectiveness of the adaptive method on a video sequence, where a
book cover can hardly be detected by the original method (frame 1) from an oblique view-
ing angle, but is eventually detected with a significant increase in the number of matched
features. Note that during the test, the camera is moving instead of being stationary.
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Figure 4: (a)Influence of adaptive trees. We used a single video sequence for online
adaptive training. (b)Adaptation to sudden illumination changes.Fluctuation of the
percentage of inliers, when a sudden illumination change happens at frames 155 and 330.

The following experiments are conducted with video sequences of a toy car against a
cluttered background. Figure 4(a) shows the percentage of inlier matches as a function of
the distance between the camera and the object, assuming this distance is 1 for the training
image. The performances are significantly improved when actual images are used to adapt
the trees. In this experiment, we used a sequence of 350 frames for offline adaptation, and
a sequence of 440 frames for performance testing and online adaptation. A forest of
20 trees is used and 200 features are selected. Notice that performance improvement is
significant, even though we only use a short sequence for offline adaptive training and
turn off online adaptation. This clearly shows the strengthof the adaptive method.

Figure 4(b) shows performance fluctuation with strong illumination changes. For the
experiment, we switch on and off a strong light to cause saturation and reflection in the
input frames. Both the original and the adaptive methods arenoticeably affected when
the light is turned on. However, by updating the trees with feedbacks from the actual
images, they adapt themselves quickly. Furthermore, when the light is suddenly turned
off, the matching performance does not suffer, meaning thatthe trees are not overfitted for
a particular light. Without adaptation, the matching performance remains very poor while
the light is on. We observed similar performance for other types of illumination changes,
such as cast shadow or shading. Figure 5 gives a specific example in this test. We can find
many correspondences, even when the lighting conditions are drastically different from
the one used for the training image. The object cannot be detected at all in this image
without an adaptation procedure starting from a detectableframe.

Next, we show the performance improvement due to the spatially distributed trees.
For comparison purposes, we use the method of Lepetit et al. [9] to construct trees with
different scale ranges, i.e., distance[0.3,2.5] and [2.0,5.0]. For each range, a forest of
20 trees utilizing 200 stable features is constructed. It isnot surprising to see that the
inlier percentage is high within the nominal range, while itdrops very quickly outside
(Figure 6). When the trees are stretched over the whole range[0.3,5.0], the performance
suffers globally.

Spatially distributed trees clearly alleviate this trade-off and extend the detectable



Figure 5:Feature matching under extreme illumination conditions.About 40% of the 200
selected features are well matched despite strong saturation and reflection.
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Figure 6:Performance comparison: spatially distributed trees.Spatially distributed trees
increase both matching accuracy and coverage.

range without any drop of performance. 40 spatially distributed trees and a total of 250
features are used. However, only between 15 and 20 trees (outof 40) are used to estimate
the pose for each frame. We chose not to adapt the trees for these experiments.

The inlier percentage is computed by only taking into account the set of features
contained in the tree closest to the camera position. Note that in robust methods such
as RANSAC, as long as the number of correspondences is sufficient, the percentage of
inliers is far more important than the total number of inliers. In our case, we are able
to find a subset of features (usually 80 features) containinga large percentage of inliers,
which is better for pose estimation than using all 200 features in the original method but
with a small percentage of correct correspondences. In thissense, we consider it a fair
comparison. Also notice that we use a local cluster of trees instead of the closest tree,
for less variance in the probability tables computation, and smooth transitions among
coverage regions.



6 Conclusion and Perspectives

We proposed two improvements to the original randomized tree feature matching method.
By analyzing the feedback from the input video, we acquire additional knowledge

about the appearance of the object under the actual viewing conditions. This is used to
update the classification trees at run-time. Thus, we are able to handle more complex 3D
objects, shadows, specular materials and extreme viewing angles.

Using spatially distributed trees designed to detect and track the object in predefined
viewing volumes makes the method more robust to viewpoint changes, and makes feature
tracking faster.
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